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1 Introduction
This document outlines the analysis plan for child mortality data collected between 2014 - 2023
(Baseline, Endline 1, Endline 2, Endline 3), as part of the General Equilibrium Effects (GE) project, a
randomized controlled trial of an unconditional cash transfer program by the NGO GiveDirectly (GD). In
villages selected for treatment, GD transferred around USD 1,000 (nominal) to all eligible households in
the village, about 75% of annual expenditure for recipient households. Our transfers constituted a shock
of about 15% of local GDP at the time that they were distributed. Only households with grass-thatched
roofs were eligible to receive transfers, a basic means-test for poverty; we find 33% of households eligible
in our study area. The intervention involved over USD 11 million in transfers and 653 villages in Siaya
County, Western Kenya. Treatment assignment was randomized at the village level, and within treatment
villages, all households meeting GD’s eligibility requirement received the unconditional cash transfer. A
second level of randomization provided variation in treatment intensity: sublocations, an administrative
unit directly above the village including about ten villages on average, were randomly assigned to high or
low saturation status. In high saturation sublocations, two-thirds of villages were treated, while in low
saturation sublocations, only one-third of villages were treated. Figure 1 gives an overview of the study
area and experimental design2.

Figure 1: Study area and experimental design (from Egger et al. 2022)

There is currently little evidence for effects of unconditional cash transfers on child mortality (Abdul Latif
Jameel Poverty Action Lab (J-PAL), 2020). This study is a unique opportunity to study such effects in a
low or lower middle income setting both because (i) it uses experimental variation; (ii) it has a large
sample size (over 65,000 households in the baseline census exercise), increasing statistical power to

2 Additional details on the experimental design and implementation can be found in Egger et al. (2022) and
Haushofer et al. (2017a).
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detect effects of a relatively rare event (childhood death), and (iii) recipient households experience
positive economic effects in the short-run (Egger et al. 2022), and preliminary results of analysis carried
out to date from Endline 2 suggest some persistent economic effects 5 to 7 years later.

This analysis is primarily focused on data related to child mortality collected in Endline 3 (about 9 years
after the transfer) although where appropriate, we will make use of earlier rounds of data as well. As such,
this document draws heavily on previously filed pre-analysis plans and existing working papers, updating
earlier regression specifications and outcomes. These earlier plans are described in section 1.1 below.

Broadly, there are two components to this analysis:
i. Studying the impacts of cash transfers on child mortality on recipient households (and their

neighbors) present in the study area at the time of the intervention
ii. Identifying the impacts of cash transfers on the causes of child deaths using machine learning

methods on verbal autopsy data

The primary data source for this analysis is a new round of household censuses in all study villages (the
Endline 3 (EL3) Household Census). The EL3 household census data may be complemented with data to
be collected from EL3 household surveys (from a representative sample of households), as well as data
collected as part of previous survey rounds (in particular EL2). The representative household sample
includes households that were residents in the study area at baseline, as well as some households that
moved into the study area after the intervention (‘new households’). We carefully track and survey both
households that have remained in the area and those that have moved away, either since baseline or
afterwards (i.e., if they were added into the sample as ‘new households’ but have since moved away
again). We describe the sample to be used to measure the effects of cash transfers on child mortality in
detail further below (see Section ‘5.2 Econometric specification of impact analysis’).

This is the first pre-analysis plan that we are filing as part of EL3 data collection activities. In addition to
this pre-analysis plan, we currently plan to file (i) a pre-analysis plan on the enterprise census activity; (ii)
a pre-analysis plan on migration outcomes; and (iii) pre-analysis plans covering the household and
enterprise surveys, once these instruments are finalized, in order to study the longer-term effects on
welfare of recipient households and local economy effects (in line with Egger et al. 2021a and Egger et al.
2021b from Endline 2). There may also be additional analyses based on these data in the future.

Endline 3 census data collection began on April 20th, 2023. We are filing this PAP shortly after the
launch, with about 10% of expected observations. To date, no member of the research team has linked the
data to treatment indicators nor estimated any treatment effects. After filing this plan, we will begin
estimating pre-registered effects for household outcomes.

1.1 Relation to previous work

This pre-analysis plan builds on a series of earlier pre-analysis plans filed for the GE project as part of
data collection in previous rounds (short-term/Endline 1: (Haushofer et al. 2016, Haushofer et al. 2017a,
Haushofer et al. 2017b, Haushofer et al. 2018, Walker 2017); Endline 2: Egger et al. (2021a, b), Orkin and
Walker 2021, Egger et al 2022). Moreover, it builds on analyses published in Egger et al. (2022), as well
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as ongoing analyses of Endline 2 data, which suggests there is some persistence in economic gains for
household consumption and assets, among other effects. In this PAP, we err on the side of brevity to avoid
repetition, as much of the detail and thought development can be found in these earlier documents.

2 Research Design

2.1 Sampling and treatment assignment

The GE project takes place in Siaya County, Kenya, a rural area in western Kenya bordering Lake
Victoria. Siaya County is predominantly Luo, the second largest ethnic group in Kenya. GD selected both
Siaya County and a region within Siaya County based on its high poverty levels and identified target
villages for expansion; in practice, these were all villages within the region that a) were not located in
peri-urban areas and b) were not part of a previous GD campaign. This gives a final sample of 653
villages, spread across 84 administrative sublocations (the unit above a village), and 3 constituencies.

We use a two-level randomization in order to generate variation that can be used to identify spillover
effects. We randomly assigned sublocations (or in some cases, groups of sublocations) to high or low
saturation status. Then, within high saturation groups, we assigned 2/3 of villages to treatment status,
while within low saturation groups, we assigned 1/3 of villages to treatment status. As noted above,
within treatment villages, all eligible households received a cash transfer.

At baseline, we censused about 65,000 households. For this round, we anticipate similar (or slightly
higher) numbers. A random sample of households were then drawn for detailed household surveys at
baseline; these households were followed up at Endline 1 and Endline 2. Additionally, at Endline 2, we
added a random sample of new households to the sampling frame. We anticipate taking a similar approach
for household surveys at Endline 3, though sampling plans for household surveys will be finalized once
the household census is complete.

2.2 Intervention

GD provides unconditional cash transfers to poor households in rural Kenya, targeting (for villages in the
study) households living in homes with thatched roofs, a basic means-test for poverty. In treatment
villages, GD enrolls all households in treatment villages meeting its thatched-roof eligibility criteria
(“eligible" households); approximately one-third of all households are eligible. No households in control
villages receive transfers. Eligible households enrolled in GD's program receive a series of 3 transfers
totaling about USD 1,0003 via the mobile money system M-Pesa. This is a one-time program and no
additional financial assistance is provided to these households after their final large transfer. For details on
the intervention, see Egger el al. (2022) and Haushofer et al. (2017a).

3 The total transfer amount is 87,000 Kenyan Shillings (KES). The average exchange rate from 9/1/14 to 4/30/16
was 97 KES/USD.

4



5

2.3 Data and Instrument

The analyses outlined in this document will be primarily based on a new round of data collected in 2023
(Endline 3), roughly 8-9 years after the GD cash transfers went out, as highlighted in the approximate
timeline below:

● 2014 - 2015: Baseline (pre-intervention)
● 2014 - 2016: Intervention
● 2014 - 2017: Midline
● 2016 - 2017: Endline 1
● 2019 - 2022: Endline 2
● 2023 - 2024: Endline 3

Activities for Endline 3 will include a household census, enterprise census, household surveys, and
enterprise surveys. The household and enterprise censusing activities will be conducted at the same time,
and are estimated to last from approximately April 2023 to September 2023. The survey activities will
also be conducted concurrently with each other, beginning after the conclusion of the census.

The child mortality analysis we pre-specify here will primarily make use of data from the household
census in our study area, although as mentioned in other parts of this PAP, we will also bring in
information from EL2 and EL3 household surveys. Specifically, EL3 household surveys will be important
to fill in the child mortality and verbal autopsy information of those households that moved away from the
study area and as such will not be surveyed in the household census. (A representative subsample of
households will be surveyed in the EL3 household survey, including those who were present in earlier
rounds but no longer live in the study area.) The household census involves re-visiting each 653 villages,
and working with local leaders and past census / tracking information to a) identify each household within
the study village and b) collect a short census module with a member of each household. The household
census will identify if households have remained in the study area, as well as counting newly established
households. For each household, we also collect a roster of births that have occurred since 2011 for
female household members that have lived in the household for at least 4 months.4 For each birth, we then
collect information on the date of birth, birth place, as well as potential migration into and out of the study
zone. We also collect information on the current status of the child, namely whether or not they are living
or have died. If no longer living, we collect the date of death, age at death, and the verbal autopsy module
(described further below).

There are two scenarios of births that we will miss under this approach. In initial pilot work in the study
area, we believe these cases are sufficiently rare so as to not meaningfully alter the analysis:

1. Those cases where the mother never lived in the study area
a. Because the birth history module starts with asking about women who have lived in this

household, we miss births from women who never lived in the study area but whose
children may have lived in the study area for at least some time since 2011.

4 We consider all births in which the child could have had some exposure to the intervention (occurred in 2014-5) or
its longer-term effects,, at least within the first five years of his/her life.
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b. Similarly, we may miss children whose mother did not live in the study area but who
lives/lived with a single father, grandparent, other relative, etc.

2. Those where the mother left the study area, and the household within the study area that she was a
member of no longer exists

a. If the only household that a woman had membership in no longer exists, for instance,
because all members are deceased or have moved away, then we will miss her birth
history.

Once the number of child deaths under 5 in a household in or after 2011 has been identified, the WHO
2022 Verbal Autopsy Questionnaire will be administered for each child. Verbal autopsy (VA) is a method
of determining individuals’ causes of death and cause-specific mortality fractions in areas lacking the
infrastructure to perform physical autopsies on all the deceased and store that data in a vital registration
system, as is standard in most high income countries today. Verbal autopsies usually consist of an
enumerator using a questionnaire to collect information about a deceased person's signs, symptoms, and
demographic characteristics from an individual familiar with the deceased. The WHO provides clear
guidance about who is the best person to respond to these questions within a household.5 In the case of
deceased in the 0-6 age group, that will most likely be their mother or primary caregiver at the time of
death.

VA is the state-of-the-art survey-based method for determining causes of death based on self-reported
information. Both the data collection method as well as cause identification methods from verbal autopsy
data have been extensively validated. Serina et al. (2015), for example, find that when comparing the VA’s
performance to the true causes of so-called “gold standard deaths” as defined by the Population Health
Metrics Research Consortium (PHMRC), the Tariff 2.0 algorithm with healthcare experience (HCE)
coding displayed a 78.3% median accuracy for child deaths, and 82.8% for neonate deaths across 500
iterations of calculating the cause-specific mortality fractions (CSMF).

The tool has been extensively used in the research context of this project and even in the specific study
area (Gacheri et al, 2004; Nyaguara et al., 2014; Amek et al., 2018), though we recognize the limitations
mentioned in these studies, such as a lower accuracy in exact cause of death identification. In the
interpretation of the findings that result from the data, we will be mindful of such potential limitations, for
example by analyzing broader cause of death groups. Moreover, we recognize the limitation of the long
recall period (back to 2011), which has not been rigorously assessed in previous work. Most studies have
a much shorter recall period, especially when used for surveillance, and we are not certain about how a
recall period of up to 12 years may affect the ability of the algorithm to determine a single probable cause
of death.

The research team behind this pre-analysis plan has been working closely with, and learning from the
expertise of, the local Kenya Medical Research Institute (KEMRI) research team that has been
implementing a Health and Demographic Surveillance System (HDSS) located in Rarieda, Siaya and
Gem Districts (Siaya County) since 2001 (Odhiambo et al., 2012). This exercise includes verbal autopsies

5 We anticipate using 2011 as the default end of our recall period, but we may adapt this rule if we find that
respondents have challenges with recall in the early years of this period.
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of all deaths in the study area. Both enumerator training and data analysis will be closely coordinated with
existing relationships with KEMRI staff.

4 Outcomes of interest
The main measure of interest focuses on child mortality. In addition, the VA tool employed in this study
primarily leads to two distinct outcomes: a determined cause of death for each individual and the
cause-specific mortality fraction (CSMF), and we will also use these two measures.

The following outcomes will primarily stem from Endline 3 household census data, although we plan to
to integrate this with some aspects of previous data (including a more limited set of child mortality
measures available in Endline 2 data) and data from future data collection (Endline 3 household surveys).6

4.1 Primary outcome of interest

4.1.1 Child mortality: Birth-level variable that takes the value 1 if the child died before turning 5, and 0
otherwise. The population to be analyzed in this measure consists of children who were born at least 5
years before the time of data collection in order to have a consistent population for both the numerator
(children who have died) and the denominator (children who have died plus children who have survived
until the age of 5). Observations of children who are alive but below 5 years old are not included.
Similarly, children who have died but were born within 5 years before data collection are not included.

4.1.2 Infant Mortality: Similar to 4.1.1, but focusing the analysis on children who died at age 0-1, where
we again include all children whose birth date was at least 1 year before the time of data collection, and
we exclude all children whose birth dates were less than a year before data collection (regardless of
whether or not they survived).

4.2 Secondary outcomes of interest

We have two specific families of secondary outcomes of interest: (i) additional child mortality and
survival outcomes, and (ii) cause of death outcomes.

Family 1: Additional child mortality and survival outcomes

4.2.1 Neonatal Mortality: Similar to the mortality metrics used as primary outcomes, but focusing the
analysis on children who died within 0 and 28 days of birth, where we again do not include children
whose birth date was within 28 days before the time of data collection. We consider this outcome as
secondary because the literature suggests that neonatal mortality is more closely linked to congenital
causes, rather than household socioeconomic circumstances or access to medical care, and thus it is less

6 The child mortality measure we can construct with Endline 2 survey data only includes children of the respondent
or the respondent’s spouse, rather than all female household members, as we attempt to capture in Endline 3. This
may potentially help resolve some of the missing cases noted above.
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closely linked to the program we study than the primary outcomes of under-5 mortality and infant
mortality.

4.2.2 Days of survival: The number of days a child survived (up to 5 years of age). This continuous
measure is not widely used (to our knowledge) in the public health literature but has some desirable
properties as it combines aspects of neonatal, infant and child mortality and avoids arbitrary cutoffs. It
provides another way to capture the intensive margin of child survival; for instance, we would capture the
survival gains from a child who lived to 4 years and 364 days versus 1 year and 1 day while these would
not be captured in the child mortality and infant mortality indicators alone. It is also potentially useful for
value of a statistical life year (VSLY) calculations.

Family 2: Cause of death outcomes
4.2.3 Cause of death: Absolute number and percentage shares of specific causes of death. We will
perform both analysis on each individual cause of death (birth-level dummy variable), as well as a
group-level analysis. For the group-level analysis, we will first use the standard three-group classification
built into most VA algorithms plus an “undetermined” category:

4.2.3.1a, Communicable, maternal, neonatal and nutritional diseases - including the individual
causes: AIDS, Diarrhea/Dysentery, Encephalitis, Hemorrhagic fever, Malaria, Measles, Meningitis, Other
Infectious Diseases, Sepsis, Neonatal Meningitis/Sepsis, Birth asphyxia, Congenital malformation,
Preterm Delivery, Stillbirth, Pneumonia, Neonatal Pneumonia, and tuberculosis related disease

4.2.3.2a, Injuries - including the individual causes: Bite of Venomous Animal, Drowning, Falls,
Fires, Poisonings, Road Traffic, Homicide (assault)

4.2.3.3a, Non-communicable diseases - including the individual causes: Child Cancers, Child
Cardiovascular Diseases, Other Defined Causes of Child Deaths, Other Digestive Diseases

4.2.3.4a Undetermined causes

In a secondary examination, we group causes into six distinct groups in order to get slightly deeper
insights:

4.2.3.1b, Nutritional disorders, and non-respiratory communicable diseases - including the
individual causes: AIDS, Diarrhea/Dysentery, Encephalitis, Hemorrhagic fever, Malaria, Measles,
Meningitis, Other Infectious Diseases, Sepsis, Neonatal Meningitis/Sepsis

4.2.3.2b Maternal and specifically neonate causes - including the individual causes: Birth
asphyxia, Congenital malformation, Preterm Delivery, Stillbirth

4.2.3.3b Respiratory diseases - including the individual causes: Pneumonia, Neonatal Pneumonia,
and tuberculosis related disease

4.2.3.4b Injuries - including the individual causes: Bite of Venomous Animal, Drowning, Falls,
Fires, Poisonings, Road Traffic, Homicide (assault)

4.2.3.5b Non-communicable diseases (NCD) - including the individual causes: Child Cancers,
Child Cardiovascular Diseases, Other Defined Causes of Child Deaths, Other Digestive Diseases

4.2.3.6b Undetermined causes

More details on cause of death identification is described in section 5.1.
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5 Analysis
The analysis of data collected that is relevant for this PAP can be separated into two stages: moving from
raw VA data to determined causes of death, and subsequently using the constructed mortality variables to
produce impact estimates. Both processes will be described in detail in the next two sections.

5.1 Cause of death identification

The most commonly used approach to analyzing VA data has been physician review. However, this
method is costly due to labor costs and the lengthy process involved. Increasingly, it is also shown to be
less effective than established machine learning algorithms designed to be used alongside VA data to
establish the most likely causes of death for each person being autopsied. Byass et al. (2015), for example,
find that one of the algorithms, InterVA, shows significant correspondence with physician assignment,
and as such can be said to produce fairly reliable cause of death assignment even across a diverse dataset.
The introduction of ML thereby not only reduces costs but greatly improves the reproducibility and open
science credentials of VA.

According to the WHO, there are four different algorithms leading to reliable cause of death diagnoses.
They do not provide a clear recommendation among them but instead leave it to the research team to find
the most suitable approach. The four algorithms, in short, are:

1. InterVA: The reported symptoms are combined with probabilities (produced by medical experts)
of the likelihood for the observed symptoms in the case of a specific cause of death. The highest
propensity determines the cause of death unless none of the scores reach above a certain threshold
(in which case it would be “indeterminate”). The cause-specific mortality fraction (CSMF) is the
percentage of each cause of death out of all deaths as found in the data itself.

2. InSilicoVA: Both the presence and absence of each symptom are considered in calculating
probabilities. Moreover, the CSMF is not purely calculated from the data but includes a
pre-trained statistical model.

3. Naïve Bayes Classifier: Similar to InSilicoVA, this algorithm considers both the presence and
absence of symptoms, but, similar to InterVA, uses the distribution of assigned causes in the data
to estimate the CSMF.

4. Tariff and Tariff 2.0: “Tariffs” estimate how informative each symptom is for a specific cause of
death, based on the PHMRC gold standard VA validation study dataset (Murray et al., 2011). The
sum of Tariffs is then matched to the cause of death with the highest ranked Tariff Score. Tariff
2.0 is an update to this approach that improves reliability by having removed or adjusted
symptom-cause associations from the initial model. The CSMF is calculated from the distribution
in the data, as in InterVA.

More information on the mathematical properties of these algorithms can be found here.

As of now, most of these algorithms have not been updated to the 2022 version of the WHO’s VA
instrument. Furthermore, it does not seem feasible to restructure data from the 2022 version of the
instrument to resemble the 2016 version enough for the algorithms to function properly. This is because

9
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the 2022 instrument is much shorter, and therefore not only asks fewer questions but also asks questions
slightly differently to capture more information in a shorter interview time.

The analysis program which has already been updated, SmartVA, uses the Tariff 2.0 algorithm and was
used to analyze pilot data we have collected up to now. The researchers may choose a different algorithm
for the main analysis if other programs have been updated by that point. In particular, the researchers will
prioritize algorithms which seem theoretically most suitable and/or those used by other organizations and
researchers in the same context. It currently seems likely that the InterVA algorithm, which is also being
used by the Kenya Medical Research Institute (KEMRI), is most suitable for the purposes of this study,
though this perception may change as research continues to evolve in this space. It is furthermore unclear
as of now if that algorithm will be updated to function for the WHO 2022 instrument. The KEMRI
research team has also recently estimated infant and child causes of death in the study region using a
similar methodology, which may be useful to discipline priors and serve as a cross-check for our cause of
death analysis.

5.2 Econometric specification of impact analysis

The main purpose of this analysis plan is to study the long-term effects of cash transfers on child
mortality. The data allow for us to look at several different effects related to this, depending on the sample
that we use for estimating effects.

First, we look at households that were present at Baseline, and that remain present at Endline 3. These
households were present at the time of the cash transfer, and thus have a clearly defined treatment and
eligibility status; the fact that they remain present at Endline 3 ensures that we have full child mortality
data from them from the EL3 household census. We include Baseline Households that have stayed in the
same location, as well as Split Households (i.e. those that have a ‘parent’ household that was in the study
area at Baseline but have established a new household for themselves; for these treatment and eligibility
status is assigned based on the ‘parent’ household).

This analysis misses households which were present at baseline but later moved away; as this is an
endogenous decision that may have implications for child survival, it is interesting to understand how
estimates may change when taking migration out of the study area by households present at the time of
the transfers into account. As part of Endline 2 household surveys, conducted with a random sample of
the full study area population, we (i) tracked households that moved out of the study area and (ii)
collected basic child mortality data on children of the focus respondent (not the full household), which we
can use to generate some initial insights around child mortality for migrants. We plan to continue tracking
migrants as part of Endline 3 household surveys, and will collect an analogous child mortality module to
the one included as part of the earlier EL2 household census. As household survey respondents are a
representative sample of households living in the study area at Baseline, we calculate child mortality
effects for all households in the study area at baseline by appropriately combining and weighting
household census and survey estimates using inverse sampling probability weights.

One may also be interested in whether the intervention affected child mortality for the study area as a
whole at endline, for which we would want to bring in New Households (those established in the study
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area after cash transfers went out), somewhat analogous to Endline 2 local economy estimation (Egger et
al. 2021b).

Primary specifications (i.e. (1), (2), and (3)) only include births after 2014 (i.e. after cash transfer
treatment began). Births from before will only be considered in secondary analyses (see ‘5.2.3 Effects
over time’). In the case that we find a changing effect over time (see ‘5.2.3 Effects over time’), we may
explore alternative definitions of time periods (e.g. pool the first 3 to 5 years after treatment for more
power). When calculating the mortality rate, we will follow the same approach as UNICEF and only
include children who were born at least 5 years before the time of data collection, as described in section
‘4 Outcomes of interest’. As an example, in our primary analysis, children who are or would have been
e.g. three years old at the time of data collection will be excluded from the child mortality metric, and
children who are or would have been under age 1 will be excluded from the infant mortality metric. We
may choose to include the whole sample for a robustness check as an additional approach.

The econometric analysis largely follows Egger et al. (2022). First, we estimate the effects on recipient
households, then the effects on non-recipient households present in the study area at the time of transfers
(Baseline). We consider effects on eligible recipient households (in equations 1 and 2 below) to be
the primary effects of interest. Second, we also plan to present results for non-recipient households (i.e.,
both eligible non-recipients and all ineligibles) to capture spillover effects (as in equation 3 below). Third,
we plan to estimate pooled effects among both recipients and non-recipients as an additional specification
(as in equation 4 below); while the pooled sample may be better powered statistically given its larger
sample size of households and births, it is also not directly comparable to the analysis among recipient
households since non-recipients did not experience any direct cash transfers (and thus may also have
experienced smaller economic gains). That said, the pooled specification has the advantage of capturing
the average impact of the cash transfer program that we study on local infant and child survival, and thus
may be of interest as part of the overall program impact evaluation.

5.2.1 Effects on recipient households
Recipient households experience both direct effects of cash as well as potential within and across-village
spillovers. A useful benchmark is the following specification which we run for eligible households
present in the study area at the time of transfers:

𝑦
𝑖𝑚ℎ𝑣𝑠

 =  α
1
𝑇𝑟𝑒𝑎𝑡

𝑣
 +  α

2
𝐻𝑖𝑔ℎ𝑆𝑎𝑡

𝑠
+  λ

𝑡(𝑖)
+ ρ

𝑔(𝑖)
+ λ

𝑡(𝑖)
* ρ

𝑔(𝑖)
+  𝐴

𝑚
+ 𝛿𝑀 + ε

𝑖𝑚ℎ𝑣𝑠
                    (1)

Where is an outcome for a birth i, in household h, in village v and sublocation s (at Baseline),𝑦
𝑖𝑚ℎ𝑣𝑠

 

is an indicator for village v being treated, and is an indicator for sublocation s being𝑇𝑟𝑒𝑎𝑡
𝑣

𝐻𝑖𝑔ℎ𝑆𝑎𝑡
𝑠

allocated high saturation status (i.e. 2⁄3 of villages being treated in s, as opposed to 1⁄3 in low-saturation
sublocations). and denote the child’s year of birth and gender fixed effects. stands forλ

𝑡(𝑖)
ρ

𝑔(𝑖)
𝐴

𝑚

dummy variables indicating the mother’s (m) age in five age groups (under 20, 20 to 25, 25 to 30, 30 to
35, above 35). M is a vector of missingness indicators for each of the covariates which allows us to retain
observations in order to maximize power.
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We cluster standard errors at the village level, and weight observations by inverse sampling probabilities
to be representative of the population of eligible households.

The primary estimation approach will use a linear probability model (OLS), but as a robustness check, we
will consider logit and probit models. Moreover, we will likely run this and any of the following
specifications also without any fixed effects.

The primary parameter of interest is which captures the direct and within-village spillover effects ofα
1

treatment on the recipients’ households’ births/children within treatment villages. measures anyα
2

additional across-village spillovers within sublocations (but not across). Since administrative sublocation
boundaries in the study’s context are relatively unimportant for economic activity, with substantial
interactions across borders, and no meaningful social or ethnic divides, we do not consider primary.α

2

Instead, the main spillover measure will be captured in equation (2).

To better capture the full spatial dimension of spillovers, we estimate the following specification for
eligible households present in the study area at Baseline:

𝑦
𝑖𝑚ℎ𝑣𝑠

 =  β𝐴𝑚𝑡
𝑣
 +

𝑟=2

𝑅

∑ β𝐴𝑚𝑡
𝑣,𝑟
¬𝑣 +  λ

𝑡(𝑖)
+ ρ

𝑔(𝑖)
+ λ

𝑡(𝑖)
* ρ

𝑔(𝑖)
+  𝐴

𝑚
+ 𝛿𝑀 + ε

𝑖𝑚ℎ𝑣𝑠
                           (2)

where, following Egger et al (2022), is the total per-capita amount transferred to village v, is𝐴𝑚𝑡
𝑣

𝐴𝑚𝑡
𝑣,𝑟
¬𝑣

the total per-capita amount transferred to households in a buffer of r-2 to r km around the village centroid
of village v, and all other variables are defined as above. The 𝐴𝑚𝑡 variables depend on both the random
assignment of villages to treatment and also on the endogenous share of households in those villages
eligible for transfers, so we instrument for them using the own-village treatment indicator 𝑇𝑟𝑒𝑎𝑡 and the

share of eligible households in each band assigned to treatment (at the time of treatment), again as in𝑠
¬𝑣,𝑟
𝑒,𝑡

Egger et al (2022). All other variables defined as above. To account for spatial correlation, we calculate
standard errors using a uniform kernel up to 10 km (Conley 2008).

We select the maximum radii band included in the main specification ( ) as in Egger et al. (2022), by first𝑅
estimating a series of nested models with the outer limit R varying from 2 to 20 km, and then selecting the
model which minimized the Schwarz Bayesian Information Criterion (BIC). In addition to the maximum
radius selected by this procedure, we will also analyze effects using , where is the ‘optimal’ radius𝑅

𝑆𝑅
𝑅

𝑆𝑅

selected in the short run, for most outcomes at 2 km with a few exceptions at 4 km (Egger et al. 2022). If
effects remain strongly localized as in Egger et al. (2022), we may additionally explore the spatial
structure of spillovers, by defining smaller increments between radii bands.

The main parameter of interest is the average “total effect” (including direct, within-village and
across-village spillovers) experienced by recipient households, as in Egger et al. (2022). We calculate
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these by multiplying the estimated coefficients of Equation (2) by the average values of the regressors, i.e.

∆𝑦𝑟 =  β * (𝐴𝑚𝑡
𝑣 

 |  𝑖 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡) +
𝑟=2

𝑅

∑ * (𝐴𝑚𝑡
𝑣,𝑟
¬𝑣  |  𝑖 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡).

5.2.2 Effects on non-recipient households
Non-recipients are composed of eligible households in control villages as well as ineligible households in
both treatment and control villages. These households experience indirect effects of cash transfers through
both within-village spillovers (ineligibles in treated villages only) and across-village spillovers (both
ineligibles and eligibles in control villages). Here, the aim is to compare the effects on recipients to
non-recipients living in the study area at Baseline. We estimate:

𝑦
𝑖𝑚ℎ𝑣𝑠

=  
𝑟=2

𝑅

∑ β
𝑟
1𝐴𝑚𝑡

𝑣,𝑟
+

𝑟=2

𝑅

∑ β
𝑟
2(𝐴𝑚𝑡

𝑣,𝑟
* 𝐸𝑙𝑖𝑔

ℎ,𝑣
) + γ𝐸𝑙𝑖𝑔

ℎ,𝑣
                                                               

                  + λ
𝑡(𝑖)

+ ρ
𝑔(𝑖)

+ λ
𝑡(𝑖)

* ρ
𝑔(𝑖)

+  𝐴
𝑚

+ 𝛿𝑀

  + λ
𝑡(𝑖)

𝐸𝑙𝑖𝑔
𝑖

+ ρ
𝑔(𝑖)

𝐸𝑙𝑖𝑔
𝑖

+ λ
𝑡(𝑖)

* ρ
𝑔(𝑖)

* 𝐸𝑙𝑖𝑔
𝑖
 +  𝐴

𝑚
* 𝐸𝑙𝑖𝑔

𝑖
+ 𝛿𝑀 * 𝐸𝑙𝑖𝑔

𝑖
+ ε

𝑖𝑚ℎ𝑣𝑠
     (3)

Where is the per-capita amount of cash transferred into the r-2 to r km buffer around the centroid𝐴𝑚𝑡
𝑣,𝑟

of village v, and is an indicator for household h being eligible, non-eligible, or not in the area at𝐸𝑙𝑖𝑔
ℎ,𝑣

baseline. All other variables defined as in Equation (1). We again instrument for using the share of𝐴𝑚𝑡
𝑣,𝑟

eligibles within buffer r around village v allocated to treatment ( ), and use Conley (2008) standard𝑠
𝑣,𝑟
𝑒,𝑡

errors with a uniform Kernel up to 10 km. The procedure for determining will be the same as noted𝑅

above for Equation (2).

The main parameter of interest is the ‘total effect’ on non-recipient households, which is a
population-weighted average of the average effects experienced by eligible households in control villages
and ineligible households, as in Egger et al. (2022). This is calculated as:

∆𝑦𝑛 = 𝑠𝑒,𝑐 * (
𝑟=2

𝑅

∑ (β
𝑟

1
+ β

𝑟

2
) *  𝐴𝑚𝑡

𝑣,𝑟
 |  𝑖 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑛𝑜𝑛 − 𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡)

          + 𝑠𝑖 * (
𝑟=2

𝑅

∑ β
𝑟

1
*  𝐴𝑚𝑡

𝑣,𝑟
 |  𝑖 𝑖𝑠 𝑖𝑛𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒)

Where is the population share of eligible non-recipients among all non-recipient𝑠𝑒,𝑐 = 1 − 𝑠𝑖

households. In supplemental material, we report the effects for these two groups separately, as well as the
breakdown between within- and across-village spillovers (see the Appendix of Egger et al. (2022)).

The main specifications (1), (2) and (3) do not include any covariate adjustments, since Egger et al.
(2022) found these to leave main results largely unchanged. We may consider additional specifications
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with covariate adjustments as described in Haushofer et al. (2017a) if this meaningfully increases the
precision of the estimates.

5.2.3 Pooled effects on all households
To calculate the pooled effect on all households living in the study area at baseline – i.e. both recipients
and non-recipients, we will estimate a population-weighted average treatment effect on these two groups
of households, following Sections 5.2.1 and 5.2.2 from Equations (2) and (3) respectively. This is
calculated as:

= + (4)∆𝑦
𝑁

𝑟

𝑁
𝑟
+𝑁

𝑛
∆𝑦𝑟 𝑁

𝑛

𝑁
𝑟
+𝑁

𝑛
* ∆𝑦𝑛

where and are the population number of recipients and non-recipients respectively.𝑁
𝑟

𝑁
𝑛

5.2.4 Effects over time
We are interested in two primary time effects: (i) effects of cash over time, and (ii) heterogeneity of
effects depending on timing and intensity of the intervention within a child’s first five life years. We
would like to study these with the following specifications:

(i) Does the effect of cash on child mortality change over time?
To calculate this effect, we first estimate the dynamic equations documented in Egger et al. (2021a):

(5)𝑦
𝑖𝑚ℎ𝑣𝑠𝑡

  =
𝑙  ∈ 𝐿
∑ β

𝑙
𝐴𝑚𝑡

𝑣(𝑡−𝑙)
+

𝑙  ∈ 𝐿
∑

𝑟=2

𝑅‾

∑ γ
𝑙,𝑟

𝐴𝑚𝑡
𝑣(𝑡−𝑙),𝑟
¬𝑣 + λ

𝑡(𝑖)
+ ρ

𝑔(𝑖)
+ λ

𝑡(𝑖)
* ρ

𝑔(𝑖)
+  𝐴

𝑚
+ 𝛿𝑀 + ε

𝑖𝑚ℎ𝑣𝑠

𝑦
𝑖𝑚ℎ𝑣𝑠𝑡

=
𝑙  ∈ 𝐿
∑ β

𝑙
1𝐴𝑚𝑡

𝑣(𝑡−𝑙),𝑟
+

𝑙  ∈ 𝐿
∑

𝑟=2

𝑅‾

∑ β
𝑙,𝑟
2 (𝐴𝑚𝑡

𝑣(𝑡−𝑙),𝑟
· 𝐸𝑙𝑖𝑔

𝑖𝑣
) + γ𝐸𝑙𝑖𝑔

𝑖𝑣

    + λ
𝑡(𝑖)

+ ρ
𝑔(𝑖)

+ λ
𝑡(𝑖)

* ρ
𝑔(𝑖)

+  𝐴
𝑚

+ 𝛿𝑀

                  + λ
𝑡(𝑖)

𝐸𝑙𝑖𝑔
𝑖

+ ρ
𝑔(𝑖)

𝐸𝑙𝑖𝑔
𝑖

+ λ
𝑡(𝑖)

* ρ
𝑔(𝑖)

* 𝐸𝑙𝑖𝑔
𝑖
 +  𝐴

𝑚
* 𝐸𝑙𝑖𝑔

𝑖
+ 𝛿𝑀 * 𝐸𝑙𝑖𝑔

𝑖
+ ε

𝑖𝑚ℎ𝑣𝑠𝑤
     (6)

Where may be one of five outcomes: (i) all child deaths (up to age 5), (ii) neonatal deaths, (iii) under-1𝑦
 

deaths, (iv) deaths between 1 and 3 years, or (v) deaths between 3-5 years.

Subscript t refers to the year of birth of an individual. The data consists of a panel constructed via recall.
For instance, if a mother reported a birth in 2018 and a birth in 2020, there would be two observations.
The birth year fixed effects, , function similarly to survey time fixed effects, but they capture timeλ

𝑡(𝑖)

trends at the time the outcome occurred (birth time), rather than when it was recalled (survey time).

, , and are transfer amounts flowing into village v at time t-l, and into radii𝐴𝑚𝑡
𝑣(𝑡−𝑙)

𝐴𝑚𝑡
𝑣(𝑡−𝑙),𝑟
¬𝑣 𝐴𝑚𝑡

𝑣(𝑡−𝑙),𝑟

bands from r to r-2 from village v at time t-l (excluding or including village v). is determined as𝑅‾
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described above. are years-of-birth-fixed-effects. L are sets of time periods before time of birth, andγ
𝑡(𝑖)

 

captures the effect of a marginal increase in the amount transferred l periods before one’s birth.γ
𝑙,𝑟

A limitation of this econometric approach is that observations that were exposed to cash early on end up
entering the control group for estimated effects on those that were exposed to cash late, a similar problem
to those recently identified in the staggered difference-in-difference literature (e.g. Goodman-Bacon
2021). We are aware that this could attenuate dynamic estimates in the presence of persistent treatment
effects, so we may consider alternative estimates based on developments in the econometrics literature
(e.g. excluding observations that did not receive cash in (t-l) but were exposed to cash in an earlier
period), including any new methods developed after the filing of this plan, as this is an active research
area in applied econometrics.

We plan to use a yearly frequency as our default, but may explore other periodicities. denotes theρ
𝑔(𝑖)

child’s gender fixed effects. As in equation (1), stands for dummy variables indicating the mother’s𝐴
𝑚

age in five age groups (under 20, 20 to 25, 25 to 30, 30 to 35, above 35), and finallyM is again a vector
of missingness indicators for any of the covariates in order to maximize power.

We follow similar thinking to what is outlined in Egger (2021b, Section 6. Aggregate outcomes of
interest) except that measurement of the relevant outcomes was not completed in real-time over several
endline data collections, but will be based on an unbalanced panel through recall from Endline 3 data.
Specification (6) attempts to measure spillovers similar to (3). We will estimate and assess the statistical
significance of effects at different time lags relative to the distribution of cash transfers, along the lines of
an impulse-response analysis. We will further examine the joint significance of the coefficients on the
lagged terms, and estimate the cumulative effect of cash transfers using an approach related to the transfer
multiplier estimates in Egger et al (2022).

(ii) Do effects of cash vary depending on what time of your life you are exposed (how many years
and which ones)?

(7)𝑦
𝑖𝑚ℎ𝑣𝑠

  =
𝑔  ∈ 𝐺

∑ β
𝑔
𝐴𝑚𝑡

𝑣𝑔
+

𝑔  ∈ 𝐺
∑

𝑟=2

𝑅‾

∑ γ
𝑔,𝑟

𝐴𝑚𝑡
𝑣𝑔,𝑟
¬𝑣 + λ

𝑡(𝑖)
+ ρ

𝑔(𝑖)
+ λ

𝑡(𝑖)
* ρ

𝑔(𝑖)
+  𝐴

𝑚
+ 𝛿𝑀 + ε

𝑖𝑚ℎ𝑣𝑠

𝑦
𝑖𝑚ℎ𝑣𝑠𝑤

=
𝑔  ∈ 𝐺

∑ β
𝑙
1𝐴𝑚𝑡

𝑣𝑔,𝑟
+

𝑔 ∈ 𝐺
∑

𝑟=2

𝑅‾

∑ β
𝑙,𝑟
2 (𝐴𝑚𝑡

𝑣𝑔,𝑟
· 𝐸𝑙𝑖𝑔

𝑖𝑣
) + γ𝐸𝑙𝑖𝑔

𝑖𝑣

                 + λ
𝑡(𝑖)

+ ρ
𝑔(𝑖)

+ λ
𝑡(𝑖)

* ρ
𝑔(𝑖)

+  𝐴
𝑚

+ 𝛿𝑀

 + λ
𝑡(𝑖)

𝐸𝑙𝑖𝑔
𝑖

+ ρ
𝑔(𝑖)

𝐸𝑙𝑖𝑔
𝑖

+ λ
𝑡(𝑖)

* ρ
𝑔(𝑖)

* 𝐸𝑙𝑖𝑔
𝑖
 +  𝐴

𝑚
* 𝐸𝑙𝑖𝑔

𝑖
+ 𝛿𝑀 * 𝐸𝑙𝑖𝑔

𝑖
+ ε

𝑖𝑚ℎ𝑣𝑠
     (8)

Which considers the same outcomes as (5) and (6) as well as the same demographic fixed effects. λ
𝑡(𝑖)

remain year-of-birth fixed effects, which are also interacted with gender. Moreover, the amounts
transferred now relate to the relevant groups, rather than time. The age groups g are defined as follows:

● Amount transferred between three and five years before birth
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● Amount transferred between 9 months and three years before birth
● Amount transferred within 9 months before birth (treatment in-utero)
● Amount transferred up to 28 days after birth (treatment as neonate)
● Amount transferred between 28 days and one year before birth (treatment as infant)
● Amount transferred between 1 and 2 years after birth (treatment as young child)
● Amount transferred between 3 and 5 years after birth (treatment as older child)

Intuitively, this specification examines whether there are different effects on children that were exposed to
cash in different times of their life, in utero, and after birth. Any effects of pre-birth exposure are more
likely to work through effect on mothers. This addresses the mechanisms through which cash affects child
mortality, whereas the first dynamic specification (in equations 5 and 6) estimates an impulse response
function that tests whether the effects of cash diminish or grow over time. The main econometric
difference between these two specifications is that we consider time gaps that are non-standard in
equations 7 and 8 and concentrated near the time that cash was distributed, motivated by key stages of
pregnancy. In contrast, equations 5 and 6 examine uniform time lags, and they focus on longer time gaps
between the transfers and child birth year.

Since equations 7 and 8 examine the time of one’s life when cash is most impactful, we will perform tests
for equality across the coefficients on the average total effects for different groups g, in addition to
looking at effects for particular periods g.

As with the specification in equations 4 and 5, using births where the individual was exposed to treatment
at a different time in their life as a control could potentially bias estimates. We may consider estimates
from the staggered difference-in-difference literature that are robust to these concerns.

A secondary interest relates to potential intergenerational effects, i.e. a child is treated around the ages
10-18 and has given birth to their own child since treatment. We are not confident that we will have the
power to detect such effects at this time, but may run some exploratory analysis and re-consider this idea
in subsequent data collection rounds.

As robustness check, we will also explore general mortality trends, i.e. distributions across age groups and
death causes before and after the intervention in 2015.

5.2.4 Mechanisms
We anticipate that estimating effects on the cause of child deaths will provide some indication of potential
mechanisms that may be behind any child mortality effects that we observe. In addition, we plan to use
the census data plus the household survey data to explore other hypothesized channels for child mortality
effects. For instance, we have detailed information on how treatment affected variables such as
expenditure on health, nutrition, fertility, and other factors that are likely mechanisms for lower child
mortality. We can also characterize correlations between these variables and child mortality in the data.
This exercise may also be based on the heterogeneity analysis as described below (and those previously
pre-specified as part of earlier plans), clustering algorithms using household characteristics, or panel data
analysis.
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5.4 Multiple inference adjustments

We have two primary outcomes – child and infant mortality – that are likely to be highly correlated. To
account for multiple inference for our primary outcomes, we make use of the Romano-Wolf multiple
testing correction, which asymptotically controls the Family-wise Error Rate (FWER). We plan to use a
resampling based approach, rather than an analytic approach to limit the FWER, because it is able to
mimic the dependence structure between child and infant mortality that we expect to see in the data,
yielding better power.

For secondary outcomes, we follow Haushofer et al. (2017a) for our treatment of multiple inference
adjustment, namely calculating sharpened q-values (i) across primary and secondary outcomes (as defined
in section 4) following Benjamini, Krieger, and Yekutieli (2006) to control the false discovery rate (FDR)
within each family of secondary outcomes. The FDR controls for the proportion of false positives, which
is relevant if one is interested in the proportion of all outcomes affected by treatment. Rather than
specifying a single q, we report the minimum q-value at which each hypothesis is rejected, following
Anderson (2008). We will report both standard p-values and minimum q-values. We will apply the
correction separately for each hypothesis test described in Section 3.1. We note that norms around
multiple testing are still evolving in economics, and through the above methods seek to follow current
best practices.

5.5 Balance and attrition

Egger et al. (2022) contains a host of balance and attrition tests as pre-specified in Haushofer et al.
(2017a), showing that the randomization succeeded in observationally comparable groups at Baseline. We
refer to those analyses and pre-specified outcomes for testing balance and attrition for earlier rounds of
data collected.

We will update these analyses for the sample reached at Endline 3, as attrition in particular may change.
To be specific, we follow Egger et al (2022) for analyzing attrition, and whether it differed by treatment
status. We estimate Equation (1) using as an outcome an indicator 𝑟𝑣h𝑠 for whether household h in village v
in sublocation s is observed at endline, and do this separately for eligible and ineligible households, and
with 𝑟𝑣h𝑠 defined either as being reached at Endline 3, in both Baseline and Endline 3, and at Baseline,
Endline 1, Endline 2, and Endline 3. If we find worrying levels of differential attrition, we will adjust for
potential bias by bounding the parameter of interest using Lee Bounds (Lee 2009) or more recent
econometric innovations (e.g. Semenova 2020) and by using a weighted least squares estimator with the
inverse probability of selection as weights.

5.6 Heterogeneous impacts

In addition to heterogeneity by timing and cause of death that have been noted above, we will also make
use of several dimensions of the data to look at heterogeneity in treatment effects. We note that the
household census data collects a much more limited set of variables than the household surveys, so we
will not be able to estimate effects on all of the same dimensions that have been previously pre-specified
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(e.g. in Haushofer et al. 2017). We can and will explore heterogeneity by (i) child gender, (ii) maternal
age (specifically, the bins that we have outlined in the specifications above), and (iii) by child birth order.

We follow the approach of Haushofer et al. (2017) (interacting indicators for these variables with the
treatment term) for these dimensions of heterogeneity. We may also run analyses for other sources of
heterogeneity in a more exploratory manner.

For this analysis, the primary focus will be on effects for recipient households, but as a secondary focus
we will also investigate heterogeneous effects for non-recipient households.

6 References
Abdul Latif Jameel Poverty Action Lab (J-PAL). 2020. "Using cash transfers to improve child health in
low- and middle-income countries." J-PAL Policy Insights. Last modified May 2020.
https://doi.org/10.31485/pi.2523.2020

Amek, N.O., Van Eijk, A., Lindblade, K.A. et al. Infant and child mortality in relation to malaria
transmission in KEMRI/CDC HDSS, Western Kenya: validation of verbal autopsy. Malar J 17, 37 (2018).
https://doi.org/10.1186/s12936-018-2184-x

Anderson, M.L., 2008. “Multiple Inference and Gender Differences in the Effects of Early Intervention: A
Reevaluation of the Abecederian, Perry Preschool and Early Training Projects”, Journal of the american
Statistical Association, December 2008, Vol. 103, No. 484: 1481-1495.

Byass, P., Herbst, K., Fottrell, E., Ali, M. M., Odhiambo, F., Amek, N., Hamel, M. J., Laserson, K. F.,
Kahn, K., Kabudula, C., Mee, P., Bird, J., Jakob, R., Sankoh, O., & Tollman, S. M. (2015). Comparing
verbal autopsy cause of death findings as determined by physician coding and probabilistic modelling: a
public health analysis of 54 000 deaths in Africa and Asia. Journal of global health, 5(1), 010402.
https://doi.org/10.7189/jogh.05.010402

Benjamini, Y., A. M. Krieger, D. Yekutieli, 2006. “Adaptive Linear Step-up Procedures That Control the
False Discovery Rate”, Biometrika, Volume 93, Issue 3, September 2006, Pages 491–507,
https://doi.org/10.1093/biomet/93.3.491

Chernozhukov, V., M. Demirer, E. Duflo and I. Fernández-Val, 2018. “Generic Machine Learning
Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to
Immunization in India”, NBER working paper.

Egger, D., J. Haushofer, E. Miguel, P. Niehaus and M. Walker, 2022. “General equilibrium effects of cash
transfers: Experimental evidence from Kenya”, Econometrica 90(6): 2603-2643.
https://doi.org/10.3982/ECTA17945

Egger, D., J. Haushofer, E. Miguel, and M. Walker, 2021a. “GE Effects of Cash Transfers: Pre-analysis
plan for Endline 2 Household”, July 2021. https://www.socialscienceregistry.org/trials/505

18

https://doi.org/10.7189/jogh.05.010402
https://doi.org/10.1093/biomet/93.3.491
https://doi.org/10.3982/ECTA17945


19

Egger, D., J. Haushofer, E. Miguel, and M. Walker, 2021b. “GE Effects of Cash Transfers: Pre-analysis
plan for Endline 2 Local Economy Analyses”, December 2021. AEA Trial Registry:
https://www.socialscienceregistry.org/trials/505

Gacheri, S., Kipruto, H., Amukoye, E., Ong, J., Mitchell, E. M. H., Sitienei, J., Kiplimo, R., & Muturi, C.
(2014). Performance of clinicians in identifying tuberculosis as cause of death using verbal autopsy
questionnaires in Siaya County, Kenya. African Journal of Health Sciences, 27, 232-238.

Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of
Econometrics, 225(2), 254–277. https://doi.org/https://doi.org/10.1016/j.jeconom.2021.03.014

Haushofer, J., E. Miguel, P. Niehaus and M. Walker. 2017a. “General Equilibrium Effects of Cash
Transfers: Pre-analysis Plan for household welfare analysis”, July 2017. AEA Trial Registry:
https://www.socialscienceregistry.org/trials/505

Haushofer, J., E. Miguel, P. Niehaus and M. Walker. 2017b. “General Equilibrium Effects of Cash
Transfers: Pre-analysis Plan for Targeting Analysis”, July 2017. AEA Trial Registry:
https://www.socialscienceregistry.org/trials/505

Lee, D. S. 2009.“Training, Wages and Sample Selection: Estimating Sharp Bounds on Treatment Effects”,
The Review of Economic Studies 76 (3): pp. 1071-1102.

Murray, C.J., Lopez, A.D., Black, R. et al. Population Health Metrics Research Consortium gold standard
verbal autopsy validation study: design, implementation, and development of analysis datasets. Popul
Health Metrics 9, 27 (2011). https://doi.org/10.1186/1478-7954-9-27

Nyaguara O. Amek, Frank O. Odhiambo, Sammy Khagayi, Hellen Moige, Gordon Orwa, Mary J. Hamel,
Annemieke Van Eijk, John Vulule, Laurence Slutsker & Kayla F. Laserson (2014) Childhood
cause-specific mortality in rural Western Kenya: application of the InterVA-4 model, Global Health
Action, 7:1, DOI: 10.3402/gha.v7.25581

Odhiambo FO, Laserson KF, Sewe M, Hamel MJ, Feikin DR, Adazu K, Ogwang S, Obor D, Amek N,
Bayoh N, Ombok M, Lindblade K, Desai M, ter Kuile F, Phillips-Howard P, van Eijk AM, Rosen D,
Hightower A, Ofware P, Muttai H, Nahlen B, DeCock K, Slutsker L, Breiman RF, Vulule JM. Profile: the
KEMRI/CDC Health and Demographic Surveillance System--Western Kenya. Int J Epidemiol. 2012
Aug;41(4):977-87. doi: 10.1093/ije/dys108. PMID: 22933646.

Romano, J. P., and M. Wolf. 2005a. Exact and Approximate Stepdown Methods for Multiple Hypothesis
Testing. Journal of the American Statistical Association 100(469): 94–108.

———. 2005b. Stepwise Multiple Testing as Formalized Data Snooping. Econometrica 73(4):
1237–1282.

19

https://www.socialscienceregistry.org/trials/505
https://www.socialscienceregistry.org/trials/505
https://doi.org/10.1186/1478-7954-9-27


20

———. 2016. Efficient computation of adjusted p-values for resampling-based stepdown multiple
testing. Statistics and Probability Letters 113: 38–40.

Semenova, Vira. Generalized Lee Bounds (2020). https://arxiv.org/abs/2008.12720

Serina, P., Riley, I., Stewart, A. et al. Improving performance of the Tariff Method for assigning causes of
death to verbal autopsies. BMC Med 13, 291 (2015). https://doi.org/10.1186/s12916-015-0527-9

Walker, M. (2017). “Pre-Analysis Plan: Local Public Finance and Unconditional Cash Transfers in
Kenya.” February 2017. AEA Trial Registry: https://www.socialscienceregistry.org/trials/505

20

https://arxiv.org/abs/2008.12720
https://doi.org/10.1186/s12916-015-0527-9

