Estimating In-Group Bias With Fuzzy Identities
Evidence from Regional Bias in Mexico

R-Scripts

Mauricio Fernandez-Duque®

March 13, 2024

1 R-Scripts for Generating Network Regionalizations

1.1 Master Script

This script provides the instructions for the commands and code
that should be run. The following ten commands should be run

sequentially .

You should have an adjacency matrix called “Adjacency Matrix.

xlsx .

*CIDE, Carretera México-Toluca 3655, Col. Lomas de Santa Fe, Del. Cuajimalpa, 01210, Mexico City, Mexico
Email: mauricio.fernandez @cide.edu.

mailto:mauricio.fernandez@cide.edu

#First, set the working directory to where you have the adjacency

matrix .

setwd ("D:/Documents/Regional Bias”)

library (readxl)

Second, define the maximum number of states in a region, and

call the first R-script.

max_states <-7

source (" SetOfRegionStrategies .R”)

Third, define the list ”strategies”, which captures the output
of the first R-script. As the name suggests, “strategies”
lists all possible strategies for each node, and provides some

additional information.

strategies <—SetOfRegionStrategies (" Adjacency_Matrix . xIsx”,

max_states)

Fourth, from ”strategies” generate the variables and lists you

need in the data frame.

NumberOfStatesInCountry <—strategies [[1]]

for (i in 1:NumberOfStatesInCountry){
placeholder <-strategies [+ NumberOfStatesInCountry+2+
NumberOfStatesInCountry+i]
assign (paste0(”list_of_strategies”,i),setNames(placeholder ,
seq-along (placeholder)))[[1]]

rm(placeholder)

for (i in 1:NumberOfStatesInCountry){
placeholder <-strategies [+ NumberOfStatesInCountry+2+
NumberOfStatesInCountry+NumberOfStatesInCountry+2+1i]
assign (paste0(”length_of_strategies”,1),setNames(placeholder,
seq_along (placeholder)))[[1]]

rm(placeholder)

for (i in 1:NumberOfStatesInCountry){
placeholder <—strategies [+ NumberOfStatesInCountry+2+
NumberOfStatesInCountry+NumberOfStatesInCountry +1]
strategies _per_state <-setNames(placeholder ,seq_along(
placeholder)) [[1]]

rm(placeholder)

This step also defines the multiplicands of the nodes’ utility
funcions. alpha refers to the weight on the matching utility ,
beta to the weight on the poularity utility , and gamma to the

cost.

alpha <-1
beta <-1

gamma<-0.3

repetitions is a parameter that indicates how many equilibriums
the program must find before stopping. In the computers I was
working with, the computers would slow down after 20

equilibriums , so I needed to shut R down and rerun.

repetitions <-20

Sixth, create a "repetitions” amount of strategy profiles.

strategyprofile <—list ()
index _strategies <—list ()
for (j in l:repetitions){
print (paste (" Creating sample strategy profiles”,j))
index_strategiesj <—c()
strategy _profilej <-list ()
for (x in 1:NumberOfStatesInCountry) {
index _strategiesj[x]<-sample(l:strategies_per_state[x],1)
strategy _profilej [[x]]<—get(pasteO(” list_of_strategies”,x))
[[1]][[index_strategiesj[x]]]
}
strategyprofile [[j]]<-strategy _profilej
index_strategies [[j]]<—index_strategies]

rm(strategy _profilej ,index_strategiesj)

Seventh, parameter n is a starting point for a for loop defined

for EqSearchStep.R, the R-script that is run in the next step

n<-1

Eighth, run the algorithm for finding the equilibrium. The
algorithm is going to proceed from the strategy profile
number "n” to the strategy profiles number "repetitions”. For
each strateg profile, it will calculate utilities from
following and from deviating from the strategy profile for

each player, and substituing in the best profitable deviation

until it finds a Nash equilibrium.

source (" EqSearchStep .R”)

1.2 Listing the Strategies per State

#This program lists each possible strategy that each node has.

#Once this program has run, you will end up with a long list

called ”strategies”. strategies[[1]] is the number of states

in the country. Say that number is N. strategies[[1+1]] is
equal to the possible strategies for 1 between 1 and the
number of states in the country. strategies[[1+N+1]] is a
vector with the xth entry equal to the number of total
strategies state x has. strategies[[1+N+2]] is equal to the
total number of strategy profiles (a multiplication of the
strategies of each state). Each of strategies[[1]] for 1
between 1+N+2+1 and 1+N+24N is a vector equal to the length of
the strategies for each strategy of state i. The rest of the
values of strategies [[1]] (from 1+N+2+N+1 to 1+N+2+N+N+2+N)
are analogous to the values we have just described, but for

strategies restricted to be at most of length max_states.

SetOfRegionStrategies <—function (file_path , max_states){

AdjacencyMatrix <— read_excel (file_path)

Now that we’ve uploaded the network that corresponds to the

state , we need to run two embedded for loops to obtain all

the strategies.

Need a counter s per state.

For each s

Generate the set of neighbors of state s.

Add the state, and the state plus each of the combinations
of neighbors, to the list of strategies.

Generate a counter ¢ equal to the number of combinations of

neighbors of s.

For each ¢, generate the set of neighbors of each state
in ¢ that are neither the state ¢ nor the neighbors of c.

Add the state plus each c¢ plus each of the combinations

of neighbors of the state in c to the list of strategies.

NumberOfStatesInCountry <-length (AdjacencyMatrix)

for(s in 1:NumberOfStatesInCountry){

The for loop fixes state s. Will use row s in the adjacency

matrix .

Create a logical vector indicating where the elements in

the fixed row are equal to 1

Use the logical vector to subset the variable names. The

new variable is the set of neighbors of the state.

The neighbors’ names are numbers encoded as strings , so

have to turn into numbers.

print (paste(s,” First loop™))

299

assign (paste (" Neighbors”,s,sep=""),as.numeric (colnames (

AdjacencyMatrix) [AdjacencyMatrix[s,] == 1]))

Create a list of combinations of the neighbors of the state

in question.

Here i1s how to obtain all possible combinations of zeros

and ones in a vector of size n. This can be used to get

all possible combinations of states that are d degrees

away from the state in question.

0

assign (paste (" Number_of_Neighbors”,s,sep=""),length(get(paste

(”Neighbors”,s,sep=""))))

l<-rep(list(0:1),get(paste(” Number_of_Neighbors”,s,sep="")))

Sequence <-1l:get(paste (" Number_of_Neighbors”,s,sep=""))

generate_vector <—function (x){
return (expand. grid (1) [[x]]+ get(paste (" Neighbors”,s,sep=""))

[x1)

vector_list <-lapply (Sequence, generate_vector)

assign (paste (" CombinationsOfNeighbors”,s,sep=""),t(as.data.

frame (do. call (rbind , vector_list))))

Now I’m going to create the first elements of the set of
strategies .

list_of_strategies <-list ()

Add to the list of strategies the strategies what include
all combinations of at most neighbors that are one state

away

assign(paste (" NumberOfCombinationsOfNeighbors”,s,sep="") ,2x*x*

get(paste (" Number_of _Neighbors”,s,sep="")))

10

for (x in 1l:get(paste(”NumberOfCombinationsOfNeighbors”,s, sep
=""))) {
list_of_strategies [[x]]<—-c(s, get(paste (”
CombinationsOfNeighbors”,s,sep=""))[x,][get(paste (”

CombinationsOfNeighbors”,s,sep=""))[x,] != 0])

Now we need to create a list of the neighbors of each of
the neighbors of the state in question

Start at c=2 because c=1 is the combination of neighbors of
neighbors that does not include any neighbors of
neighbors. Therefore, it yields strategies that are

already included in the list.

for(c in 2:get(paste (”NumberOfCombinationsOfNeighbors”,s, sep
=""))){
assign (paste (" Combination”,c,” OfNeighborsOf”,s,sep=""),get(
paste (" CombinationsOfNeighbors”,s,sep=""))[c,])
assign(paste (" Combination”,c,” OfNeighborsOf”,s,sep=""),get(

paste (" Combination”,c,” OfNeighborsOf”,s,sep="")) [get(

11

paste (" Combination”,c,” OfNeighborsOf”,s,sep="")) !=0])

#I take the rows that correspond to the neighbors in
question

2

assign (paste (”subset_Network_",s,” 7, ,c,sep=""),

AdjacencyMatrix [get(paste (" Combination”,c,” OfNeighborsOf

7,s,sep="")) 1)

... 1 create a row that sums the subset of rows, and I
keep as TRUE those variables in the row that are
positive (where at least one of the neighbor states in

question has it as a neighbor)

2 2

assign (paste(”logical_vector_subset_network_",s,” 7 ,c,sep

9

=""),colSums (get(paste (" subset_Network_",s,

L) 9

_V,c,sep="")

))>0)

assign (paste (" NeighborsOfTheNeighbors”,c,” OfState”,s, sep
=""),as.numeric (colnames (AdjacencyMatrix) [get(paste (”

logical _vector_subset_network_",s,” _",c,sep=""))1))

12

I need to remove from the list of neighbors of the
neighbor of state s both the neighbors of state s and

state s itself.

assign (paste (" NeighborsOfTheNeighbors”,c,” OfState”,s, sep
=""),setdiff (get(paste (" NeighborsOfTheNeighbors”,c,”
OfState”,s,sep="")),s))

assign (paste (" NeighborsOfTheNeighbors”,c,” OfState”,s, sep
=""),setdiff (get(paste (" NeighborsOfTheNeighbors”,c,”

OfState”,s,sep="")),get(paste (" Combination”,c,

OfNeighborsOf”,s,sep=""))))

Now I have to find all possible combinations of states
within the filtered set of neighbors of the neighbor of

state s.

assign(paste (" NumberOfNeighborsOfTheNeighbors”,c,” OfState ”,

s,sep=""),length(get(paste(”NeighborsOfTheNeighbors”,c,”

OfState”,s,sep=""))))

13

l<-rep(list (0:1),get(paste (”NumberOfNeighborsOfTheNeighbors

”,c,” OfState”,s,sep="")))

gridnotallzeros <—expand. grid(1)[-1,]

This next variable is useful for the upcoming if operator

Number_of_strategies_so_far <-length(list_of_strategies)

Need an if loop because there are three separate cases.
If a neighbor n has no neighbors, then we already
included the corresponding strategy of the state s plus
the neighbor n. If a neighbor n has one neighbor nn, we

only need to add the strategy of s plus n plus nn.

if (get(paste(”NumberOfNeighborsOfTheNeighbors”,c,” OfState

”,S ,Sep:””))>1){

Sequencec <— 1l:get(paste(”NumberOfNeighborsOfTheNeighbors

”,c,” OfState”,s,sep=""))

generate _vectorc <—function (x){

return (gridnotallzeros [[x]]* get(paste (”

14

NeighborsOfTheNeighbors”,c,” OfState”,s,sep=""))[x])

vector_listc <-lapply(Sequencec, generate_vectorc)

assign(paste (" CombinationsOfNeighborsOfNeighbors”,c,”
OfState”,s,sep=""),t(as.data.frame(do.call (rbind,

vector_listc))))

assign (paste (" NumberOfCombinationsOfNeighborsOfNeighbors

9999

”,c,” OfState”,s,sep="") ,nrow(get(paste (”
CombinationsOfNeighborsOfNeighbors”,c,” OfState”,s, sep

="7"))))

Now I’m going to continue to compile the set of

strategies into a vector

for (x in 1l:get(paste(”
NumberOfCombinationsOfNeighborsOfNeighbors”,c,” OfState
”.s,sep=""))) {
list_of _strategies [[x+Number_of_strategies_so_far]]<-c(

s,get(paste (”Combination”,c,” OfNeighborsOf” s, sep

15

=77)),get(paste (”CombinationsOfNeighborsOfNeighbors
”7,c,” OfState”,s,sep=""))[x,][get(paste (”
CombinationsOfNeighborsOfNeighbors”,c,” OfState ”,s,

sep=""))[x,] = 0])

} else {

if (get(paste(”NumberOfNeighborsOfTheNeighbors”,c,”
OfState”,s,sep=""))==1){
list_of_strategies [[l+ Number_of_strategies_so_far]]<-c(
s,unlist (unname(get(paste (”Combination”,c,”

OfNeighborsOf”,s,sep="")))),unlist (unname(get(paste

(”NeighborsOfTheNeighbors”,c,” OfState”,s,sep="")))))

The following is cleanup. Don’t want to keep all the
variables created in the for loop.

But don’t want to delete the adjacency matrix just yet!

assign (paste(”list_of_strategies”,s,sep=""),

16

list_of_strategies)

all_objects <— Is ()

99 A9 2

list_of_list_of_strategies <— c(all_objects[grep(pasteO (,

29 2

list_of_strategies”), all_objects)],” AdjacencyMatrix”,

max_states”)

objects_to_remove <—setdiff (all_objects ,

list_of _list_of_strategies)

rm(list=objects_to_remove , all _objects ,

list_of _list_of_strategies)

}

NumberOfStatesInCountry <-length (AdjacencyMatrix)

Now we construct a vector that specifies how many strategies

each state has.

strategies_per_state <—numeric(length=length(ls(pattern="

17

list_of_strategies[0-9]+7)))

for(i in 1:length(strategies_per_state)){
strategies _per_state[i]<—length (get(pasteO(”

list_of_strategies”,i)))

We would like to compute the total number of strategy
profiles.

number_of_strategy_profiles <-strategies_per_state [1]

for(i in 2:length(strategies_per_state)){

number_of_strategy_profiles <-number_of_strategy_profiles=*

strategies_per_state [1]

Finally , we would like to know the length of each strategy of

each state.

18

for(i in 1:NumberOfStatesInCountry){

length <=list ()

for(x in 1l:strategies_per_state[i]){
print (i)
print (x)
length [[x]]<-length (get(paste0(” list_of_strategies”,1))[[x

1D
t

assign (paste0(”length_of_strategies_state”,i),length)

rm(length)

Now we will cull the strategies so that they contain at most
max _states states , and then provide the same statistics as for

the full sets of strategies

for (i in 1:NumberOfStatesInCountry){
placeholder <—get(pasteO(” list_of_strategies”,1))[get(paste0(”

length_of_strategies_state”,1))<=max_states]

19

assign (paste0(”list_of_strategies_MaxStates”,i),placeholder)
rm(placeholder)

}

strategies_per_state_MaxStates <—numeric(length=length (1s (

pattern="1ist_of_strategies [0-9]+7)))

for(i in 1:length(strategies_per_state_MaxStates)){
strategies_per_state_MaxStates[i1]<-length(get(paste0(”

list_of_strategies_MaxStates”,1)))

number_of_strategy_profiles_MaxStates <—

strategies_per_state_MaxStates [1]

for (i in 2:length(strategies_per_state_MaxStates)){
number_of_strategy_profiles_MaxStates <-
number_of_strategy _profiles_MaxStates =

strategies_per_state_MaxStates [1]

for (i in 1:NumberOfStatesInCountry){

length <-1list ()

20

for(x in 1:strategies_per_state_MaxStates[i]){
print (1)
print (x)
length [[x]]<-length (get(paste0 (”

list_of_strategies_MaxStates”,1))[[x]])

}

assign(paste0(”length_of_strategies_state_MaxStates”,1),

length)

rm(length)

Now we build the list of variables to return.

variables_to_return <-list ()

variables_to_return[[1]] <—NumberOfStatesInCountry

for (i in 1:NumberOfStatesInCountry){

variables_to_return[[l+i]]<-get(pasteO(”list_of_strategies”,i

21

)

variables_to_return [[1+NumberOfStatesInCountry+1]]<—
strategies_per_state
variables_to_return [[1+NumberOfStatesInCountry+2]]<—

number_of_strategy_profiles

for (i in 1:NumberOfStatesInCountry){
variables_to_return [[1+NumberOfStatesInCountry+2+i]]<-get(

paste0(”length_of_strategies_state”,1))

for(i in 1:NumberOfStatesInCountry){
variables_to_return[[1+NumberOfStatesInCountry+2+
NumberOfStatesInCountry+i]]<—-get(paste0(”

list_of_strategies_MaxStates”,1))

22

variables_to_return [[1+NumberOfStatesInCountry+2+
NumberOfStatesInCountry+NumberOfStatesInCountry+1]]<-
strategies_per_state_MaxStates

variables_to_return [[1+ NumberOfStatesInCountry+2+
NumberOfStatesInCountry+NumberOfStatesInCountry+2]]<-

number_of_strategy_profiles_MaxStates

for (i in 1:NumberOfStatesInCountry){
variables_to_return[[1+ NumberOfStatesInCountry+2+
NumberOfStatesInCountry+NumberOfStatesInCountry+2+i]]<-get

(paste0O(”length_of _strategies_state_MaxStates”,i))

return(variables_to_return)

1.3 Finding the Equilibria

23

This R-script takes as a starting point a strategy profile j (
starting with j=n and ending with j=repetitions), and
calculates the utilities from following and deviating from the
strategy profile for each node. It then stops if no one wants
to deviate , and registers the result as an equilibrium. If
someone wants to deviate , it substitutes the best deviation
into the strategy profile, and starts again until it finds an

equilibrium .

for(j in n:repetitions){

EquilibriumCondition <-0

counter <-1

strategyprofilej <-strategyprofile [[]]]

index _strategiesj <—index _strategies [[]]]

The program has defined its strategy profile starting point.

The while loop below will continue to run until an

equilibrium is found.

24

while (EquilibriumCondition==0){
print (paste (" This i1s iteration”,counter ,” of strategy profile
7.3))

counter <—counter+1

length <—1list ()

for (i in 1:NumberOfStatesInCountry){
strategyprofileji <—unlist(strategyprofilej[i])
length[[i]]<-length(strategyprofileji)
rm(strategyprofileji)

}

assign (pasteO0(”lengths_strategyprofile”,j),length)

rm(length)

Calculating the utility for each possible strategy of each

possible state given the strategy profile (that is,

”

keeping others’ strategies fixed).

For the strategy profile]

utilities _strategyprofilej <-list ()

25

For each state 1

for (i in 1:NumberOfStatesInCountry)

print(paste(i))

utilities_strategyprofilej_statei <—list ()

For each strategy of state i

for (k in 1:strategies_per_state[i]){
utilities_strategyprofilejstateistrategyk <-list ()
assign (paste0(”matching_utility _profile”,j,” state_",1,”
strategy_",k) ,0)

assign(pasteO(” popularity_utility_profile”,j,” state_",1,”

strategy_",k) ,0)

Consider each state x (other than i) in the kth

strategy of i

if (get(paste0(”length_of_strategies”,i))[[1]1]1[[k]]I>1){

26

for (x in 2:get(paste0(”length_of_strategies”,i))

[[11T00kI]) |

xthStateInStrategyOfi <— get(paste0(”

list_of_strategies”,1))[[1]][[k]][x]

Consider each state y in x’s strategy
if (get(pasteO(”lengths_strategyprofile”,j))[[

xthStateInStrategyOfi]]>1){

for (y in 2:get(paste0(”lengths_strategyprofile”,j)

)[[xthStateInStrategyOfi]]) {

Give i a point if x includes i in the strategy

is following according to strategy profile]

if (strategyprofilej[[xthStateInStrategyOfi]][y
]==i){
assign(paste0(”matching_utility _profile”,j,”
state_",1,” strategy_",k),get(paste0(”

2

matching _utility _profile”,j,” state_",1,

27

strategy_",k))+1)

Also give 1 a point for every state z (other than 1)

for(z in 1:NumberOfStatesInCountry){

if (z!=1){
... that has state x as part of 1its strategy. To
do this , have to consider each state b that is

part of z’s strategy in profile j.

for (b in 1:get(paste0(”lengths_strategyprofile”,j)

)[z11){

bthStateInStrategyOfz <—strategyprofilej[[z]][b]

28

if (bthStateInStrategyOfz==xthStateInStrategyOfi){
assign (paste0(” popularity _utility _profile”,j,”
state_",1,” strategy_",k),get(paste0 (”

popularity_utility _profile”,j,” state_",1,

strategy_",k))+1)

In the paper I consider several parametrizations of the
popularity utility. The code below shows how to program the
bound on the popularity utility I used for the second

parametrization .

if (get(pasteO(” popularity _utility _profile”,j,” state_",i
,Vstrategy -7 ,k))<3) {
bounded_popularity <—get(paste0 (”

popularity _utility _profile”,j,” state_",1,” strategy_

29

7,k))
}
else {

bounded_popularity <-2

}

This i1s where the utility function is calculated. The
parameters alpha and beta are set in the Master script
, although the piece of code below could be changed to
modify the wutility function more significantly.

assign (paste0(”utility 7,i,” strategyprofile”,j,” strategy_
”,k),alphaxget(paste0(” matching _utility _profile”,j,”
state_",1,” strategy_",k))+betaxbounded _popularity -
gamma=(1/2) «(get(paste0(”length_of _strategies”,i))
[[1]][[k]]-1)=(get(paste0(”length_of_strategies”,1))
[[1111[k]]+1-1))

utilities_strategyprofilej_statei [k]<—get(paste0 (" utility

2

,1,7 strategyprofile”,j,” strategy_-",k))

objects_to_remove <—c(paste0 (" matching_utility_profile”,j
,” state_",1,” strategy_",k),paste0(”

popularity _utility _profile”,j,” state_",i,” strategy_".,k

30

) ,paste0(”utility ”,i,” strategyprofile”,j,” strategy_",k

)

rm(list=objects_to_remove)
rm(objects_to_remove)
}
utilities_strategyprofilej [[1]]<-
utilities_strategyprofilej_statei

2 29

objects_to_remove <—c(” xthStateInStrategyOfi”,

utilities_strategyprofilej_statei”,

bthstatelnstrategyofz ”,”X”,”i”,”Z”,”y”,”b”,”k”)

rm(list=objects_to_remove)

rm(objects_to_remove)

For the strategy profile j, calculate the utility of each

actor when everybody is following the strategies

31

prescribed by the strategy profile

utility _from _strategy _profile_j <-c()
for (i in 1:NumberOfStatesInCountry)
index_strategies_profilej_statei <—index_strategiesj[1]
utility from _strategy_profile_j[i]<-
utilities_strategyprofilej [[1]][[
index _strategies_profilej_statei]]

}

rm(list="index_strategies_profilej_statei”)

For the strategy profile j, calculates the sum of payoffs

TotalPayoff <—sum(utility from_strategy_profile_j)
print (paste (" Total payoff in round”,counter ,” strategy profile

”.j,"is”,TotalPayoff))

For each strategy profile j, calculates the difference
between the wutility a state gets from following the
strategy prescription (along with everybody else), and the

utility a state gets from each possible strategy.

32

Differencej <-list ()
for (i in 1:NumberOfStatesInCountry){
Differenceji <—c ()
for (k in 1l:strategies_per_state[i]) {
Differenceji[k]<—utility _from_strategy_profile_j[1]-
utilities _strategyprofilej [[1]][[k]]

}

Differencej[[i]]<—-Differenceji

}

rm(list="Differenceji”)

Calculates the best possible deviation of each player,
providing

a) the difference in utilities between everybody following
the candidate strategy profile and everybody but the
state in question following the candidate strategy profile

b) An indicator value for each state equal to one if they
have a profitable deviation

c¢) the label of the strategy that provides the best

deviation .

33

IsThereAProfitableDeviationj <—c ()

BestDeviationPayoffj <—c ()

BestDeviationStrategyj <—c ()

for(i in 1:NumberOfStatesInCountry)
BestDeviationPayoffj[i]<-min(Differencej[[1]])
BestDeviationStrategyj[i]<—which.min(Differencej[[1]])
IsThereAProfitableDeviationj[i]<—ifelse (min(Differencej[[1

11) <0,1,0)

print (paste (”The states with a profitable deviation (those
with a 1), are the following:”,
IsThereAProfitableDeviationj))

print (paste (”The vector of best deviation payoffs is:”

BestDeviationPayoffj))

2
b

print(paste (”The vector of best deviation strategies 1s:

BestDeviationStrategyj))

Provides the number of actors who would deviate from
strategy profile j, as well as the sum of the differences

of the deviators between the utility they get from

34

following the strategy prescription and the wutility they

would get from their best deviation.

NumberOfActorsWhoWouldDeviatej <—sum (
IsThereAProfitableDeviationj)

Although I want to sum only over the individuals who would
like to deviate, the vector BestDeviationPayoff is at most
zero (for those who cannot do better from deviating).

SumOfDeviationPotentialj <-sum(BestDeviationPayoffj)

print(paste (" The number of actors who would deviate is given
by:” ,NumberOfActorsWhoWouldDeviatej))

print (paste ("The sum of the deviation potential is given by
:”,SumOfDeviationPotentialj))

ScrambledSubsetOfActorsWhoWouldDeviate <—which (
BestDeviationPayoffj <0)

if (length(ScrambledSubsetOfActorsWhoWouldDeviate)>1){
ScrambledSubsetOfActorsWhoWouldDeviate <—sample (

ScrambledSubsetOfActorsWhoWouldDeviate)
}
FirstElementofScrambledSubset <—

ScrambledSubsetOfActorsWhoWouldDeviate [1]

35

if (NumberOfActorsWhoWouldDeviatej==0){
Here have to record the relevant variables , because if we
are in this condition it means that an equilibrium has

been found.

EquilibriumCondition <-1
save(strategyprofilej ,utility from_strategy_profile_j ,
TotalPayoff , file=pasteO(” equilibriul_1_30_Bounded_1_",j
,”.RData”))
print ("An equilibrium has been found! Habemus equilibrium ™)
}
elseq
BestDeviationStrategyjFirstElementofScrambledSubset <-
BestDeviationStrategyj [FirstElementofScrambledSubset]
strategyprofilej [[FirstElementofScrambledSubset]]<—-get(
pasteO (" list_of_strategies”,
FirstElementofScrambledSubset)) [[1]][[
BestDeviationStrategyjFirstElementofScrambledSubset]]
index_strategiesj [FirstElementofScrambledSubset]<—

BestDeviationStrategyjFirstElementofScrambledSubset

36

print (”Black smoke”)

37

	R-Scripts for Generating Network Regionalizations
	Master Script
	Listing the Strategies per State
	Finding the Equilibria

