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1 Introduction

Our experimental design takes inspiration from the ideas discussed in Schwartzstein and Sun-

deram (2021), however the primary objective of the experiment is not to test the Schwartzstein

and Sunderam (2021) model. Rather, we aim to shed light on when and why persuasion using

models is likely to occur and what factors can help to protect individuals from being persuaded

in this way. We do this by testing the set of hypotheses described below using comparative static

comparisons using the exogenous variation generated by our treatment conditions as well as the

additional variation created by the experimental design.

Following Schwartzstein and Sunderam (2021) (S&S), we will consider a strategic setting

in which there is a persuader / advisor (narrative-sender) and a receiver / investor (narrative-

recipient). The receiver has access to data that is informative about the true underlying model.

The persuader’s objective is to propose a model to the receiver that guides the receiver in in-

terpreting this data. The receiver then takes an action that influences the payoffs of both the

persuader and the receiver. Importantly, the persuader’s incentives may be either aligned or mis-

aligned with the receiver’s – i.e., the persuader might attempt to convince the receiver to take an

action that does not serve her own best interests.

In this setting, we will investigate which factors influence the effectiveness of persuasion

using models. Specifically, we will ask questions such as the following: (1) Are receivers worse

off when the sender’s incentives are misaligned? (2) Does knowing the sender’s incentives

make receivers skeptical? (3) Does access to private data protect receivers? (Alternatively:

Are persuaders less effective when they cannot construct ex post models that fit the receiver’s

available data?) (4) Are receivers better off if they are encouraged to make sense of the evidence

themselves before they receive the sender’s message? (5) Does the empirical plausibility of the

sender’s proposed model affect receiver’s trust in the model?

2 Experimental Design

In our experiment, we consider a two-player game where one player takes the role of sender

and the other takes on the role of receiver. We frame our experiment using an investment game,

such that the receiver is an investor whose objective is to assess the likelihood that a fictitious

company will be successful (as opposed to unsuccessful) in the coming year. The experiment

labels the coming year as “Year 11”. The sender is an advisor to the investor, and will provide

advice about the fictitious company.

In each round of the experiment, the investor’s objective is, therefore, to correctly assess the

underlying state of the world (i.e., the likelihood of the company being successful in Year 11).
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To do this, the investor can draw on the information she observes about the history of success of

the company.

However, prior to the investor reporting their assessment of the company’s likelihood of

success, the advisor sends a message to the investor. The advisor always knows the true model

generating the data. In addition, in most treatment conditions, the advisor also observes the data

that the receiver has access to. The advisor may use this message to try to persuade the investor

to hold a belief that is biased in a certain direction by distorting the investor’s interpretation of

the data containing the history of past outcomes.

The Data Generating Process: The history of past outcomes consists of the past ten periods

(years) of the company’s performance. This data shows whether the company was “successful”

or “unsuccessful” in each of the past ten years (i.e., from Year 1 to Year 10). The following

provides an illustrative example of how one particular history could be represented.

Year1 2 3 4 5 6 7 8 9 10

Success

Failure

Widget Company A

In each year, the probability of the company being successful is determined by an underlying

fundamental, θ. This fundamental changes exactly once during the ten years. More specifically,

it is common knowledge that θpre is drawn from U[0, 1] prior to Year 1, and then is redrawn

once at some point after Year 2 and before Year 9, denoted by θpost ∼ U[0, 1]. Therefore, the

probability of success in each of the ten years is governed by (θpre, θpost). In the experiment, we

frame the change in the fundamental state as a change in the CEO of the company. The value of

θpre then summarizes the probability of success for the period before the CEO changed (the pre

period) and θpost denotes the probability of success for the period after the CEO changed (the

post period). The following figure illustrates the structure of the historical data.
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1 2 9 103 4 5 6 7 8 Year

change in θ (CEO) at one of these points:θpre θpost

Consequently, the last two periods in the historical dataset are commonly known to be (i)

governed by a different probability of success to the first two periods, and (ii) informative about

the success probability of the company in Year 11.

To formalise the setup, let c ∈ {2, 3, 4, 5, 6, 7, 8} denote the period before the the structural

change (i.e., if c = 2, then the structural change occurred at the end of year 2, or equivalently, at

the beginning of year 3). We specify a data generating process where c is uniformly distributed,

which we also disclose to participants.1 The variable c summarises the true model: it specifies

that the last 10 − c years of data are relevant for whether the company is successful under the

new CEO. Therefore, θpre denotes the realised probability of success up to and including year c

and θpost denotes the realised probability of success after year c.

The Advisor’s Additional Information: The advisor is fully informed about the underlying

data generating model—i.e. the advisor knows the true values of the three fundamental parame-

ters: (cT , θT
pre, θ

T
post). The investor knows that the advisor has this additional information.

The Advisor’s Message: The advisor sends three pieces of information to the investor: (i) an

estimate cS ∈ {2, 3, 4, 5, 6, 7, 8} of the year when there was a structural change, and (ii) estimates

θS
pre ∈ [0, 1] and θS

post ∈ [0, 1] of the success probability prior to and after the structural change,

respectively.

The Investor’s Decision: The investor observes the advisor’s report (cS , θS
pre, θ

S
post) and then

submits her own estimate of θR
post.

The Investor’s Incentives: The investor is incentivised to estimate θpost as close as possible

to θT
post. We will use the binarized scoring rule (Hossain and Okui, 2013) to ensure that the

investor’s payment will be maximized (in expectation) if she reports her true belief about θpost.

1In other words, participants know that c is randomly drawn from a uniform distribution over {2, 3, 4, 5, 6, 7, 8}.
(In the experiment, we frame this as being at the beginning of years 3 to 9, rather than at the end of years 2 to 8.)
Participants also know that both θpre and θpost are independently drawn from uniform distributions, U[0, 1]. This is
done independently for each of the ten companies (i.e., for each of the ten rounds of the experiment).
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The Advisor’s Incentives: Participants in the experiment who are assigned the role of advisor

will be randomly assigned into one of three incentive conditions. In all three conditions, the

advisor’s payment will be a function of their matched investor’s θpost-report. Under the three

conditions, the advisor’s payment is either: (a) increasing in the investor’s estimate of θpost, (b)

decreasing in the investor’s estimate of θpost, or (c) increasing in the accuracy of the investor’s

estimate of θpost. Each advisor keeps the same incentives for the duration of the experiment.

This will be incentivized using an strategic version of the binarized scoring rule (BSR),

where there are two key differences from the standard BSR. First, the belief report that is relevant

for determining the probability of receiving the bonus payment is made by another individual,

not oneself. Second, in incentive conditions (a) and (b), the θS
post reported by the investor is

compared to extreme θpost values, θpost = 1 or θpost = 0 respectively, rather than being compared

to the true θpost to determine the advisor’s payment. In incentive condition (c), the advisor’s

payoff is calculated in the same way as the investor’s payoff (i.e., their incentives are perfectly

aligned).

Strategic Information about Incentives: Investors are told about the different types of advi-

sors that they may face. Specifically, they are told about the distribution of advisors with each of

the three incentive types, namely that the probability of being matched with each advisor type in

each round is one-third. In treatment Skepticism, investors will additionally be informed about

the incentives of their specific matched advisor in each round (more details below).

Advisors know the incentives of investors. In all treatment conditions, advisors are also

always told that investors may or may not know their matched advisor’s incentives.

General Comments about the Design: The basic idea of this design is that the advisor (in

contrast to the investor) knows the underlying DGP (cT , θT
pre, θ

T
post), which provides an oppor-

tunity for gains from communication between both players, since the advisor is more informed

but the advisor’s payoff depends on the investor’s action. Depending on advisor’s incentives, the

advisor might sometimes try to deceive the investor into reporting an overly optimistic or pes-

simistic belief about θpost. Specifically, the advisor can use the other dimensions of the report,

(cS , θS
pre), as supporting evidence for trying to shift this belief about θpost.

We have chosen to deviate from S&S in that we usually do not elicit the investor’s prior

beliefs about the model (i.e., before persuasion); that is, her prior beliefs about (c, θpre, θpost).

The reason for this is two-fold. First, we wish to study situations in which senders (advisors)

present data to receivers (investors) at the same time as they communicate their theory explaining

the data, as opposed to the receiver first constructing their own personal theory of the data. This

conjunction of receiving the data and a potential theory at the same time reflects many real-world
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situations. Second, we wish to explicitly study whether being encouraged to form a personal

theory of the data prior to receiving a potential theory from an advisor has a protective function

in helping to insulate receivers (investors) from persuasion.

2.1 Treatment Conditions:

To address our research questions, we will consider four core between-subject treatment condi-

tions.

Baseline: Our Baseline treatment follows the structure described above. The other three treat-

ments involve small deviations from the Baseline condition in which we exogenously vary one

specific feature of the decision environment.

PrivateData: To investigate whether having access to private data serves a protective role

against persuasion, we vary whether the advisor observes the historical performance dataset.

In particular, it is common knowledge in this treatment that the advisor does not observe the

historical performance dataset when choosing their message. The advisor, therefore, knows the

true underlying parameters of the data generating process, and is still able to try to persuade the

investor by sending an inaccurate message, but is unable to tailor the message to the data that

the investor observes. This may make it more difficult for the advisor to send a message that is

both deceptive and persuasive.

Skepticism: To investigate whether knowing their specific matched advisor’s incentives makes

investors skeptical, investors are made aware of the advisor’s incentives. Because we are inter-

ested in investor behavior, we hold the advisor’s information set constant by telling advisors also

in this treatment that investors may or may not know their incentives.2

Sequential: In this treatment, we examine the effect of being encouraged to form a default (or

prior) theory about the data generating process before entertaining theories received from others.

Specifically, instead of receiving the historical data and the advisor’s message simultaneously,

and then forming a belief about the data generating process, in this treatment investors will first

receive only the data. We will then ask them to report their prior belief about the data generating

process (i.e., c, θpre, and θpost). Thereafter, they receive the advisor’s message, and we elicit

their final assessment of θpost.

2We control for investors’ higher-order beliefs by informing them that advisors do not know that investors know
what their matched advisor’s incentives are.
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This treatment will allow us to evaluate whether being encouraged to try to make sense of

the data oneself first serves a protective function against persuasion using models.3

2.2 Procedures:

The experiment will be conducted via the platform, Prolific. Participants will take part in the

experiment in groups of 6. Within each group, 3 participants are randomly assigned to the role

of the sender (advisor) and 3 are assigned to the role of the receiver (investor). Each advisor is

randomly assigned to one of the three incentive conditions (i.e., there will be one advisor from

each of the three incentive conditions within each group of 6). Both advisors and investors keep

their role for the duration of the experiment; advisors additionally stay within their incentive

condition throughout the experiment.

The experiment consists of ten rounds. In each round, each investor is randomly matched

with an advisor within their group of six (i.e., the three investors are randomly matched with the

three advisors).

Within each of the ten rounds, the true underlying data generating process will be held

constant across all matched investor-advisor pairs. Specifically, the triple of fundamentals,

(cT , θT
pre, θ

T
post), is held constant within a specific round across all subjects.4 However, condi-

tional on these fundamentals, the observed historical data of success and failure of the company

is drawn independently for each matched pair of participants. This provides us with exoge-

nous variation in the data observed by subjects, conditional on a particular set of fundamentals

governing the success of a the company in that round.

Participants are paid for one randomly chosen round of the experiment and do not receive

any feedback until the end of the experiment. The absence of feedback implies that investor

behavior cannot affect advisors. Advisors only influence investors directly through the messages

they send. We, therefore, can implement the experiment in a simpler way where we first collect

all advisor choices for the ten rounds, and thereafter collect investor choices.
3An additional benefit of this treatment is that the reported prior beliefs will provide us with some descriptive

information about the types of subjective models that investors construct in the absence of messages from advisors.
It also allows us to examine updating of beliefs.

4We will therefore randomly draw ten realizations of (cT , θT
pre, θ

T
post); one for each round of the experiment. These

will apply to all participants in all sessions of the experiment.
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3 Hypotheses and Analysis

3.1 Definitions and Measures

Our main hypotheses and analysis relate to the following objects that we collect in each round,

for each matched sender-receiver pair:

(i) The sender’s message, (cS , θS
pre, θ

S
post).

(ii) The receiver’s assessment, θR
post.

(iii) The realized historical dataset of successes and failures, h = (ω1, . . . , ω10).5

In addition, we collect the fundamental parameters of the true data generating process,

(cT , θT
pre, θ

T
post), which vary across rounds, but are held constant across participants within a

given round.

In order to organise the discussion of our hypotheses below, it will be useful to define some

derivative measures that we can construct from this information. We organise these measures

into three categories: (i) measures that compare a participant’s message or assessment to the

truth, (ii) measures that compare a participant’s message or assessment to the observed historical

data, and (iii) measures that provide an indication of the degree to which the sender is able to

persuade the receiver (i.e., to shift their assessment).

Measures Relative to the Truth: The two measures of primary interest in this class are the

distance between sender’s message about θpost and the true value, and the distance between the

receiver’s assessment of θpost and the true value:6

(i) Distance between the sender’s message and the truth: DT (θS
post) B |θ

S
post − θpost|

(ii) Distance between the receiver’s assessment and the truth: DT (θR
post) B |θ

R
post − θpost|

Measures Relative to the Historical Data: For each round and each matched pair of partic-

ipants, the historical success data comprises ten realizations of the underlying data generating

process in that round. It is therefore informative to compare participants’ messages and assess-

ments to the information that they observe.

To do this, for each observed dataset, we determine the data-optimal model, namely the

model that is most likely to have generated the data, (cDO, θDO
pre , θ

DO
post). Following S&S, we take

the maximum likelihood estimate of (c, θpre, θpost) for a given dataset h as the model that most

5Where ωt ∈ {0, 1} with P(ωt = 1) = θpre if t ≤ c and P(ωt = 1) = θpost if t > c.
6In addition, we construct an indicator variable that takes a value of one if the sender lies in their message, and

zero if they tell the truth: I(θS
pre , θpre ∨ cS , c ∨ θS

post , θpost)
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likely generated the data. Given this data-optimal model, we can compare the message and

assessment of the sender, (cS , θS
pre, θ

S
post), to the optimum. We will do this by constructing an

empirical plausibility index (EPI) which takes on values between 0 and 1 and is equal to 1 if

the sender’s message is equal to the data-optimal model. If the sender’s message is equal to

the model that is least likely given the data, the EPI will take on a value of 0. Values of the

EPI that are strictly between 0 and 1 reflect cases of intermediate plausibility. We use the EPI

as a measure of the distance in plausibility between the sender’s message and the data-optimal

model:

EPI(cS , θS
pre, θ

S
post|h) B

L(cS , θS
pre, θ

S
post|h)

L(cDO, θDO
pre , θ

DO
post|h)

, (1)

where L(·|h) is the likelihood function conditional on the historical data h. In Appendix

A.1, we provide further details on the construction of the EPI and discuss its relation to other

benchmarks.

Measures of Persuasion: In our analysis, it will be of interest to have measures of the de-

gree to which senders are able to persuade receivers. The measures discussed above already

contribute to this by showing how far receivers’ assessments are shifted away from the truth, or

from the data. However, we also want to construct measures that indicate the degree to which

receivers follow the message of the sender.7 To do this, we construct the following measures:

(i) Distance between the sender’s message and the data-optimal model:

DDO(θS
post) B |θ

S
post − θ

DO
post|

(ii) Distance between the sender’s message and the receiver’s assessment:

DS (θR
post) B |θ

R
post − θ

S
post|

(iii) The ratio of the distance that the receiver moves away from the data-optimal point to the

distance that the sender tries to move the receiver from the data-optimal point:

T B
θR

post−θ
DO
post

θS
post−θ

DO
post

A trust measure of T = 1 means the receiver is highly trusting of the sender; a trust value

of T = 0 means that the receiver is maximally skeptical of the sender. Moreover, T < 0 and

7For a single receiver in a single round, one can think of this as an indication of the receiver’s trust in the sender’s
report. When considering the average across all rounds for a single receiver, one can think of this as a measure of the
receiver’s gullibility.
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T > 1 suggest excessive skepticism and trust, respectively.8 The following figure illustrates this

measure:

Figure 1: Illustration of our measure of trust.

0 1θS
post θDO

postθR
post

3.2 Hypotheses

Our main hypotheses are stated below. They concentrate on comparing receiver behaviour us-

ing two dimensions of exogenous variation: (i) different treatment conditions, and (ii) different

sender types (i.e., senders with aligned or misaligned incentives).

When interpreting the hypotheses, and the associated empirical analysis plans, it is impor-

tant to keep in mind that in three of our treatments (Baseline, Skepticism, and Sequential), we

hold the instructions of the senders completely constant. Since senders also receive no feedback

between rounds, this implies that sender behavior in these treatments should be approximately

balanced on average, which allows a clean comparison of the receiver behavior in response to

sender messages across these treatment conditions. In our fourth treatment, PrivateData, both

the senders’ and the receivers’ instructions change in comparison to Baseline, since both learn

that the sender will not observe the historical dataset prior to sending a message to the receiver.

This implies that a treatment comparison between PrivateData and another treatment (e.g., Base-

line) should be interpreted as a change in the equilibrium play of senders and receivers.

With regards to sender types, in the hypothesis section, we will often distinguish between

receivers who face a sender with aligned versus misaligned incentives. A sender has aligned

incentives if their payment is maximized when the receiver adopts the true θpost of the data

generating model. A sender who is incentivized to induce the receiver to report an estimate

of θpost that is shifted towards either 0 or 1 is misaligned. As mentioned above, we introduce

exogenous variation in the sender incentives within each of our treatment conditions.

Following the section below in which we describe our main hypothesis, we also discuss a set

of secondary hypotheses which focus more on within-treatment variation and sender behaviour.

3.2.1 Main Hypotheses

Influence of persuasion by senders (in Baseline): We study the impact of sender incentives

on receiver assessments by comparing the distance of the receiver’s assessment to the true model,

8We would normally expect to see T ∈ [0, 1] for each observation (i.e., that the receiver’s report is between the
data-optimal model and the sender’s message). Therefore, checking for violations of this may be used as a form of
rationality check on receiver behaviour.
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DT (θR
post), within the Baseline treatment. Our first hypothesis is that receiver assessments are

further from the truth when they face a sender with misaligned incentives. This provides a test of

whether senders are able to persuade receivers to shift their beliefs, despite receivers observing

objective data.

Hypothesis 1. In Baseline, the distance between the receiver’s assessment and the truth is larger

when sender incentives are misaligned than when sender incentives are aligned.

We will test this hypothesis using the following regression model:

DT (θR
post) = β0 + β1 × I(Misaligned sender) + ρr + ε

and estimating it via OLS. In the equation above, I(Misaligned sender) is an indicator function

which takes a value of 1 if sender incentives are misaligned, ρr are round fixed effects and ε is

an error term.9 We will account for repeated observations and potential within matching group

spillovers by clustering errors at the matching group level.10 Using the estimates from this

equation, we will test whether β1 > 0. In addition, we will also present results from a Wilcoxon

rank-sum test that tests whether the distributions of DT (θR
post) differ by alignment of the sender.

When reporting these tests we will again account for repeated measurement and within matching

group spillovers by reporting a test statistic for receiver outcomes which adjusts for clustered

errors at the matching group level (see, e.g., Rosner et al., 2006).

Comparative statics using between-treatment variation
The following three hypotheses all involve exploiting the variation provided by our treatment

conditions. We measure how persuasion changes in the various treatments relative to Baseline

using OLS regressions of the following kind:

DT (θR
post) = β0 + β1 × I(Treatment) + ρr + ε. (2)

As our main persuasion measure to test our hypotheses, we take the distance between the truth

and the receiver’s assessment, DT (θR
post). To augment these results, we will also report the results

of similar regressions which use the distance between the receiver’s assessment and the sender’s

message, DS (θR
post), as an alternative outcome measure.11 The regressions will also typically

9Since the true model is held constant within each round of the experiment, the ρr parameters absorb both round
and true model fixed effects.

10It is worth noting that since senders receive no feedback at all during the experiment, the within matching group
spillovers are more limited in scope than usual in experiments where subjects interact in groups. In our experiment,
interaction between players only operates in one direction: from senders to receivers via the messages. Receivers
also do not receive any feedback on the outcomes of their decisions prior to the end of the experiment.

11It is important to note that the treatment comparisons involving the distance between the receiver’s report and the
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include round fixed effects (ρr). In addition, we will also report nonparametric Wilcoxon rank-

sum tests results for each hypothesis comparing the distribution of the outcome variable between

two treatments. As before, both for the regression and the nonparametric test, standard errors

will be clustered at the matching group level.

Influence of receiver skepticism: We study the impact of receiver skepticism by compar-

ing the distance between the receiver’s assessment and the truth when matched to a misaligned

sender between Baseline and Skepticism. Since the sender’s instructions are held constant be-

tween Baseline and Skepticism, the treatment comparison holds sender behaviour fixed and only

potentially changes receiver behaviour. Our hypothesis is that, when moving from Baseline to

Skepticism, this distance between the receivers assessment and the truth will decrease.12

Hypothesis 2. When matched with a sender with misaligned incentives, the distance between

the receiver’s assessment and the truth is smaller in Skepticism than in Baseline.

We test this hypothesis by estimating the regression specified in equation (2) for the Baseline

and Skepticism treatments and testing whether β1 < 0.

Influence of the receiver forming their own prior model: Here, we study the impact of

encouraging the receiver to form their own personal interpretation of the data before they receive

the assessment from the advisor. We do this by comparing the distance between the receiver’s

assessment and the truth when matched with a misaligned sender between the Baseline and

Sequential treatments. Our hypothesis is that, when matched to a misaligned sender, receivers’

assessments are closer to the truth in Sequential than in Baseline.

Hypothesis 3. When matched with a sender with misaligned incentives, the distance between

the receiver’s assessment and the truth is smaller in Sequential than in Baseline.

We test this hypothesis by estimating the regression specified in equation (2) for the Baseline

and Sequential treatments and testing whether β1 < 0.

sender’s message, DS (θR
post), have a simple interpretation when comparing the three treatments in which the sender’s

information set is held identical (i.e., Baseline, Skepticism, and Sequential). However, treatment comparisons of
this object involving the PrivateData treatment are more complicated to interpret, since both sender and receiver
behavior may change. It is for this reason that we focus on DT (θR

post) as our primary object of interest. This has a
clear interpretation across all four treatments.

12Our hypothesis here focuses only on misaligned senders. However, when considering aligned senders, it is possi-
ble that communication between an aligned sender and receiver improves when moving from Baseline to Skepticism
as the receiver knows in Skepticism exactly when their matched sender is aligned. As a corollary to Hypothesis 2,
we will also test for this possibility by comparing the distance between the receiver’s assessment and the truth when
matched to an aligned sender between Baseline and Skepticism.
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Influence of receiver private data: We study the protective role of the receiver having access

to private data by comparing the distance between the receiver’s assessment and the truth when

matched to a misaligned sender between Baseline and PrivateData. We hypothesize that, when

matched to a misaligned sender, receivers’ assessments are closer to the truth in PrivateData

than in Baseline. Another interpretation of this hypothesis is that it is a test of whether senders

who are able to construct an ex post narrative or model that is tailored to the exact historical data

series that receivers observe are able to be more persuasive.

Hypothesis 4. When matched with a sender with misaligned incentives, the distance between

the receiver’s assessment and the truth is smaller in PrivateData than in Baseline.

We test this hypothesis by estimating the regression specified in equation (2) for the Baseline

and PrivateData treatments and testing whether β1 < 0.

3.2.2 Secondary Hypotheses

Our secondary hypothesis are organized to test for certain empirical regularities using within-

treatment variation. They mostly follow the theoretical predictions of the framework adapted

from S&S to fit our experimental design. Appendix A.3 sets up the adapted framework, presents

predictions, and discusses how they can be tested using data from the experiment. A reader

interested in more detailed theoretical justifications of the following hypotheses can refer to this

Appendix.

Since we use within-treatment variation for our secondary hypotheses, when studying re-

ceiver behaviour, we will predominantly focus on the Baseline treatment in order to hold con-

stant other contextual factors.13 We will also focus on the subset of rounds where receivers are

matched with a misaligned sender to study persuasion. For this reason, we will also collect a

larger sample size in our Baseline treatment.14 When studying sender behavior, we are able

to exploit the fact that the senders face an identical choice problem in the Baseline, Skepticism,

and Sequential treatments (i.e., senders in these three treatments receive identical instructions—

they only differ in the receivers they are matched with, but are not aware of these differences and

do not receive feedback from these receivers during the experiment). Therefore, we pool the

senders from these three treatments for our within-treatment comparisons for senders.

13As a robustness check, we will also report the results for all receivers in the Appendices of the paper, including
fixed effects to control for treatment differences, as well as fixed effects that account for potential interactions between
the treatment and the alignment of the senders’ incentives.

14A second reason for collecting a larger sample for our Baseline treatment is that we use the Baseline treatment
as a comparison group in most of our main hypotheses, which makes it efficient to collect a larger sample for this
treatment in comparison to the other treatments.
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Secondary Hypotheses Regarding Receiver Behavior:

The influence of the empirical plausibility of narratives on receiver trust: This hypothesis

addresses the question: are receivers more willing to follow a message that fits the data well?

We study the impact of the receiver receiving an empirically plausible message (i.e., a mes-

sage that fits the observed historical data well) by relating the distance between the sender’s

message and the receiver’s assessment, DS (θR
post), to the empirical fit of the sender’s message, as

measured by the Empirical Plausibility Index (EPI). We hypothesize that the better the sender’s

message fits the observed data, the smaller the distance between the sender’s message and the re-

ceiver’s assessment. Essentially, this says that receivers will be more willing to follow a sender’s

message if it fits the data they observe well.

Hypothesis 5a. The distance between the sender’s message and the receiver’s assessment de-

creases in the EPI.

We will test for this hypothesis by running a regression of the following form using data

from receivers in the Baseline treatment:

DS (θR
post) = β0 + β1EPI(cS , θS

pre, θ
S
post|h) + α + ρr + ε

and testing whether β1 < 0. In the equation above, α denotes the estimated effect of being

matched to an aligned sender. The round indicator variable, ρr, captures experimental round

fixed effects. We will cluster standard errors at the matching group level.

The influence of alternative available models on receiver trust: Here, we introduce a sub-

hypothesis that checks for a potential force moderating the relationship between the message’s

EPI and the receiver’s assessment: if there exist different models that fit the observed data com-

paratively well, does this make it more difficult to persuade the receiver to adapt the sender’s

model compared to the case where there is a single salient data-optimal model?

We study the impact of the availability of alternative models by examining whether the shape

of the EPI function, taken across all possible values of θpost, affects the distance between the

sender’s message and the receiver’s assessment, DS (θR
post). The EPI function is single-peaked

in cases where the data provides a relatively salient data-optimal model but has multiple peaks

when the data provides room for multiple competing explanations. We hypothesize that, if

the history of outcomes can be equally well explained by different models, the receiver is less

easily swayed by the sender’s model (assuming that the receiver has reason to believe that there

is at least some chance that the sender does not have aligned incentives, as is the case in our

Baseline treatment). The rationale behind this hypothesis is that when the EPI has multiple
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peaks, the receiver can more easily entertain alternative models that explain the data similarly

well. Therefore, we conjecture that the distance between the sender’s message and the receiver’s

assessment is higher if, among all possible values of θpost, the EPI has multiple local optima.15

To adjust for possible changes in the sender’s message quality across different histories, we

condition the hypothesis on the value of the EPI evaluated at the sender’s model.

Hypothesis 5b. Conditional on the value of the EPI evaluated at the sender’s model, the dis-

tance between the sender’s message and the receiver’s assessment is smaller if the EPI has a

single global optimum than if it has multiple local optima.

We will test for this hypothesis by running a regression of the following form using data

from receivers in the Baseline treatment:

DS (θR
post) =β0 + β1EPI(cS , θS

pre, θ
S
post|h) + β2I(EPI has multiple peaks)

+ α + ρr + ε

and testing whether β2 > 0, where the variable “EPI has multiple peaks” is a binary variable that

takes a value of one when the EPI has more than one local maximum. Fixed effects and standard

errors are calculated in the same way as in the specification for Hypothesis 5a.

Secondary Hypotheses Regarding Sender Behavior:

To conduct our within-treatment hypothesis tests pertaining to senders, we will pool sender

data from all treatments where senders face an identical decision problems (i.e., the Baseline,

Skepticism, and Sequential treatments).

The influence of incentives on sender behaviour: In a first comparison, we ask how senders

react to different incentives. We will do this by comparing the distance between the sender’s

message and the truth, DT (θS
post), between aligned and misaligned senders. Our hypothesis is

that the messages of misaligned senders are further from the truth.

Hypothesis 6a. The distance between the sender’s message and the truth of the post report,

DT (θS
post), is larger for misaligned senders than for aligned senders.

Constructing a convincing narrative: A related test of sender strategies concerns the narrative

part of the sender’s problem: A sender might adjust their choices of c and θpre to make their
15Another way to think about this is that, if the log likelihood function of the model for a given history is relatively

flat in θpost, the sender is less swayed by the receiver’s message, even if the communicated model has a high EPI
because alternative models exist that also have a high EPI. We proxy flatness of the log likelihood function by
distinguishing between flat (multiple peaked) and non-flat (single peaked) functions. Figure A.3.1 in Appendix A.3
plots this function for an example history.
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report of θpost more convincing.16 As we show in the Appendix, an upward incentive-biased

sender should deviate from reporting the data-optimal year of change cDO only if a different

year increases the number of successes or decreases the number of failures in the post period.

Conversely, a downward incentive-biased sender should deviate only if a different year decreases

the number of successes or increases the number of failures in the post period. We hypothesize

that this behaviour leads to a systematic bias in the choice of θpre away from the true model,

which results in upward incentive-biased senders reporting a smaller value than the truth and

downward incentive-biased senders reporting a larger value than the truth. In other words, the

bias in the choice of θpre operates in the opposite direction to the choice of θpost for misaligned

senders.

Hypothesis 6b. The distance between the sender’s message and the truth of the pre report,

DT (θS
pre), is larger for misaligned senders than for aligned senders.

To test the previous two hypotheses, we specify and estimate regressions of the form

DT (θS ) = β0 + β1I(Misaligned sender) + ρr + ε, (3)

that either use DT (θS
post) (Hypothesis 6a) or DT (θS

pre) (Hypothesis 6b) as an outcome variable.

We will test whether β1 > 0. We will take account of repeated measurement by clustering

standard errors at the sender level.17

Balancing persuasiveness against the truth (Aligned senders): Aligned senders face a trade-

off between sending a truthful message and sending a message that more plausibly induces the

truth. Whether this tension induces the sender to bias their report of θpost away from the data-

optimal model may depend on the difference between θT
post and θDO

post. If this difference is posi-

tive (i.e., θT
post > θDO

post), an aligned sender has an incentive to bias their report upwards moving

it closer to the truth, while they have an incentive to bias it downward towards the truth if the

difference is negative (i.e., θT
post < θ

DO
post).

18 This leads us to the following hypothesis which asks

whether aligned senders follow such a strategy that involves reporting a weighted average of the

truth, θT
post, and the data-optimal parameter, θDO

post:

16This is despite the fact that the sender’s incentives depend only on the receiver’s θpost report, implying that
distortions of c and θpre serve a pure story-telling role.

17When reporting regressions on sender outcomes, we will take a less conservative clustering approach than when
reporting on receiver outcomes, since senders do not receive feedback from other participants in their matching group.

18Note that this hypothesis could be formulated in two different, but equivalent, ways—either by considering that
reports can be biased away from the data-optimal model or that they can be biased away from the true data generating
model. Both are captured by the following intuition: We expect aligned senders’ reports to reflect a compromise that
biases their reports away from the data-optimal model and towards the true model (i.e., we expect that the average
aligned sender will choose a report that represents some linear combination of the true θT

post and the data-optimal
θDO

post).
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Hypothesis 7a. The distance between the data-optimal model and the aligned sender’s report,

DDO(θS
post), increases in the distance between the truth and the data optimal report |θT

post−θ
DO
post|.

We test this hypothesis by estimating the following model for senders from the pooled Base-

line, Skepticism, and Sequential treatments:

DDO(θS
post) =β0 + β1I(Misaligned) + (β2 + β3I(Misaligned)) · |θT

post − θ
DO
post| + ρr + ε

and testing whether β2 > 0.

Gravitational pull of the truth is weaker for misaligned senders: A final, related hypothesis

is that misaligned senders should be less responsive to the true model than aligned senders.

Essentially, the misaligned senders have incentives to persuade the receiver to move away from

the truth, and they are constrained only by the receivers information set (i.e., the historical data,

which yields the data-optimal model) and their own truth-telling preferences. If misaligned

senders have no truth-telling preferences, they will completely disregard the truth and it will

play no role in influencing their report. In this hypothesis we check whether misaligned senders:

(a) are influenced by the truth, and (b) whether the size of this influence (pull towards the truth)

is smaller than it is for aligned senders.

Hypothesis 7b. The distance between the data-optimal model and the misaligned sender’s re-

port is governed to a lesser extent by the size of |θT
post − θ

DO
post| than in the aligned sender’s report.

In the regression model specified above, we test whether: (i) β2 + β3 > 0, namely whether

misaligned senders are responsive to the truth at all, and (ii) β3 < 0, namely whether they are

less responsive than aligned senders.

Tentative plans for additional exploratory analysis: In addition to the analysis specified

above that is aimed at testing the hypotheses that we have outlined, we plan to also include some

more exploratory analyses in the paper. We view it as being potentially useful to provide a de-

scription (snapshot) of our tentative plans regarding this exploratory analysis, although we note

that this analysis is likely to change in the final version of the paper (in the paper, we will indicate

which analyses were pre-registered and which are exploratory). Our tentative plans include the

following: We plan to estimate regression models that explain the sender’s report as a function

of their type, the data optimal model, the period they report on, and the true model. We also

plan to measure the percentage of sender messages that are consistent with utility maximization

and investigate how messages deviate from the theoretical benchmark. Appendices A.2 and A.3

contain further details.
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4 Sample Size

As most of our planned hypothesis tests either: (i) compare the Baseline treatment to one of

our other treatment conditions, or (ii) compare participants within the Baseline treatment, we

will collect more observations for Baseline than for the other treatments. In particular, we

plan to collect data from 360 participants (180 senders and 180 receivers) in Baseline and from

180 participants in each of the remaining treatments. The sample size gives us 80% power to

detect a minimum treatment effect of 2.3 when considering the distance between the receiver’s

assessment and the truth at the 5%-level.19 We based the power analysis on data we collected

in a pilot of the Baseline treatment where we found that the distance between the receiver’s

assessment and the truth, our main outcome variable of interest, had a mean of 17.467 and a

standard deviation of 14.094.

Therefore, in total, we will collect approximately 900 observations in these four treatment

conditions: 360 in Baseline, 180 in Skepticism, 180 in Sequential and 180 in PrivateData.

Within each treatment, half will be senders and half receivers. Amongst senders, one-third will

be randomly assigned to each incentive condition.

19In the power analysis, we randomly draw observations from the pilot data and simulate regression results that
include round fixed-effects and which cluster standard errors at the matching group level.
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A Appendix

A.1 Construction of the empirical plausibility index

In this section, we show how we determine the model that is most likely to have generated

a history of outcomes. Possible models consist of parameter combinations (c, θpre, θpost). The

data set consists of a vector h = (ω1, ω2, ..., ω10), where ωt ∈ {0, 1}. An ωt = 1 denotes “success”

and an ωt = 0 denotes “failure”. For each possible parameter combination and data set, we can

calculate the empirical likelihood as follows:

L(c, θpre, θpost|h) =

c∏
t=1

(θS
pre)ωt (1 − θS

pre)1−ωt ×

10∏
t=c+1

(θS
post)

ωt (1 − θS
post)

1−ωt ,

= (θS
pre)ω1+...+ωc(1 − θS

pre)c−(ω1+...+ωc) × (θS
post)

ωc+1+...+ω10(1 − θS
post)

10−c−(ωc+...+ω10),

= (θS
pre)kpre(1 − θS

pre)c−kpre × (θS
post)

kpost (1 − θS
post)

10−c−kpost .

(4)

In the equation above, kpre ≡
∑c

t=1 ωt denotes the number of successes before the structural break

and kpost ≡
∑10

t=c+1 ωt denotes the number of successes after the structural break. We further

know that, fixing c, the maximum likelihood estimator of θpre and θpost is equal to θDO
pre(c) =

kpre/c and θDO
post(c) = kpost/(10 − c). Therefore, the optimal year of change cDO for a given data

set h is equal to arg max
c∈{2,3,...,8}

L(c, θDO
pre(c), θDO

post(c)|h).

We evaluate the empirical plausibility index of sender’s messages (EPI) for a given data set

by comparing the empirical likelihood of the sender’s model to the that of the model that is most

likely to have generated the data as follows:

EPI(cS , θS
pre, θ

S
post|h) B

L(cS , θS
pre, θ

S
post|h)

maxcL(c, θDO
pre(c), θDO

post(c)|h)
.

Since, for any data set, there always exists a model which induces a minimized likelihood value

of zero,20 the empirical plausibility index is scaled to take on values between zero and one. An

empirical plausibility index of one suggests that the sender sent the model that is most likely to

have generated the data set, while a value of zero suggests that the sender sent the model which

is least likely to have generated the data set.

Relation to Schwartzstein and Sunderam (2021) S&S conceptualize an agent who will be

20For a given c, if either kpre < c or kpost < 10 − c, setting θpre = θpost = 1 will result in a likelihood value of zero.
If the history only consists of successes, so that kpre = c and kpost = 10 − c, setting θpre = θpost = 0 will result in
a likelihood value of zero. A model which induces a zero likelihood value thus always exists. Since the likelihood
function can never take on negative values, we conclude that its minimum value is zero.
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persuaded by a model whenever that model provides a better empirical fit of the data than an

initial default model held by the agent. The empirical fit is thereby measured by the likelihood

conditional on the data and the agent’s prior beliefs. Whenever some model induces a higher

EPI than another model, an agent in S&S would prefer the first model. To show this equivalence

more precisely, we derive the posterior distribution over (c, θpre, θpost) that a Bayesian agent with

prior belief ψ(c, θpre, θpost) would hold after observing h. Denote this posterior distribution by

f (c, θpre, θpost|h, ψ). Using Bayes’ rule,

f (c, θpre, θpost|h, ψ) =
f (h|c, θpre, θpost)ψ(c, θpre, θpost)∑8

x=2

∫
y∈[0,1]

∫
z∈[0,1] f (x, y, z|h)ψ(x, y, z) dydz

.

Now, ψ(c, θpre, θpost) is constant for all potential messages, since we specified a data generating

process where all parameters are uniformly distributed and independent of one another. Further,

the denominator in the equation above is constant over all potential messages. It follows that

the joint distribution is directly proportional to f (h|c, θpre, θpost), which is equal to the likelihood

function in (4). As a consequence, any message which maximizes the likelihood function also

maximizes the joint distribution of parameters. Therefore, a message that suggests a model

with EPI = 1 would always (weakly) persuade an agent regardless of the default model in S&S.

More generally, if for any two models (c′, θ′pre, θ
′
post) and (c′′, θ′′pre, θ

′′
post) EPI(c′, θ′pre, θ

′
post) >

EPI(c′′, θ′′pre, θ
′′
post), an agent in S&S would judge the former model more plausible.

Comparison to the beta-binomial updating formula A different popular belief benchmark

in the literature is to compare stated beliefs about certain parameters to their objective Bayesian

expected value. We will consider the case where an agent forms a degenerate belief about c

and subsequently arrives at non-degenerate beliefs for θpre and θpost using Bayesian updating.

Before seeing any data, agents hold a uniform prior over θpre and θpost. A uniform distribution

on [0, 1] can be represented by a beta distribution with parameters α = 1 and β = 1. The mean

of a beta distribution is given by
α

α + β
.

Upon seeing n realizations of the state (success/failure), out of which k are successes and l are

failures, agents update the parameters of the beta distribution to α̃ = α + k and β̃ = β + l. The

posterior mean belief is thus equal to

α̃

α̃ + β̃
=

α + k
α + β + n

.

This is also known as the beta-binomial updating formula. However, the posterior mode of a
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beta distribution is given by

min
{

α̃ − 1
α̃ + β̃ − 2

, 1
}

if α̃ > 1, β̃ ≥ 1.

Consider the following example of a Bayesian agent who observes h′ = (1, 1, 1, 1, 0, 0, 1, 0, 1, 0)

and believes that c = 4. If non-degenerate, their posterior belief over θpre is distributed according

to a beta distribution with α = 5 and β = 1. Their mean belief of θpre is thus equal to 5/6. In

contrast, an agent in S&S would find an estimate of θpre more persuasive that maximizes the

likelihood function. This estimate is equal to the empirical frequency of successes in periods 1-4;

4/4. Similarly, the expected value of θpost according the beta-binomial updating formula is 3/8,

whereas the maximum likelihood estimate of θpost for c = 4 is 2/6. These considerations imply

that EPI(4, 4/4, 2/6|h′) > EPI(4, 5/6, 3/8|h′). It is straightforward to verify that the maximum

likelihood estimates coincide with the mode of the updated beta distribution. Therefore, it is best

to think of our EPI measure as quantifying the plausibility of a model under the assumption that

agents evaluate the model’s likelihood against the historical data and accept the model whenever

the likelihood is sufficiently high. When they accept the model, they form a degenerate belief

about (c, θpre, θpost), which is equal to the parameters of the accepted model.

A.2 Analysis of senders’ messages

To gain a more fine-grained insight into sender strategies, we will specify and estimate regres-

sion models that explain a sender’s report of θpre and θpost as a function of the sender’s type,

the empirical data, the period they report on, and the true model. We offer two approaches to

specifying such models.

Parametric approach We take the pre and post report of a sender as the outcome variable (θS
t )

and specify the regression model

θS
t =β0 + β1I(t = post) + I(type = upward) ×

[
β2 + β3I(t = post)

]
+ I(type = downward) ×

[
β4 + β5I(t = post)

]
+ δ1θ

T
t + δ2θ

DO
t + ρr + ε.

We call this the “parametric approach” since we explicitly include θT
t and θDO

t as benchmark

controls in the regression. Therefore, estimated effects of the sender type and on the reporting

period are relative to these benchmarks. In the later presented semiparametric approach, we

instead measure differences in reporting relative to the empirically observed average report. Let

us highlight the interpretation of a number of coefficients and their expected signs:

21



• β2 and β3 capture deviations in the reporting behavior of an upward biased sender relative

to the behavior of an aligned sender, separately for the pre and for the post period. We

expect β2 < 0 and β3 > 0 (see hypotheses 6a and 6b).

• β4 and β5 capture deviations in the reporting behavior of an downward biased sender

relative to the behavior of an aligned sender, separately for the pre and for the post period.

We expect β4 > 0 and β5 < 0 (see hypotheses 6a and 6b).

To examine aligned senders, notice that they essentially have the same incentives to bias their

model away from the data-optimal model as the upward biased sender if θT
t − θ

DO
t > 0 and an

incentive as the downward biased sender if θT
t − θ

DO
t < 0. We introduce the terms

(θT
t − θ

DO
t )

[
β6 + β7I(t = post)

]
+I(type = upward)(θT

t − θ
DO
t ) ×

[
β8 + β9I(t = post)

]
+I(type =downward)(θT

t − θ
DO
t ) ×

[
β10 + β11I(t = post)

]
in the regression above. Here we accordingly expect that β6 < 0 and β7 > 0.

Semiparametric approach The experiment provides a high degree of variation in the histories

that sender-receiver pairs observe. With the semiparametric approach, we will use this feature of

the experimental design to maximize what we can learn from the data. The method we will use

consists of “mirroring” histories, as described in the following. One can construct a mirror image

of any history of past outcomes h that reverses the timing of success and failure. For example,

the history h = (1, 0, 1, 1, 1, 0, 0, 0, 0, 1) has a mirror image history h′ = (1, 0, 0, 0, 0, 1, 1, 1, 0, 1).

More formally, h′ is a mirror image of h if ωt = ω′10−(t−1) for all t ∈ {1, . . . , 10}, ωt ∈ h and

ω′t ∈ h′. Observe that h′ is a mirror of h if and only if h is a mirror of h′. We will refer to any

two histories (h, h′) where h′ is a mirror of h as a “mirror pair”.21

This part of our analysis consists of identifying mirror pairs for which the set of all senders

collectively report at least two models (one for each history of the pair) in the experimental data.

We then compare the θS
pre from one history of the pair to the θS

post from the other history of the

pair. This comparison allows us to cleanly identify the directions into which senders bias their

reports. A sender who always reports the true data generating model should on average report the

same θpre for history h as θpost for history h′ and the same θpre for history h′ as θpost for history

h. On the contrary, a sender who exaggerates the post period success probability should report

a θpost for history h that is larger than the θpre for history h′, etc. Table 1 presents example of

experimental data and the comparisons we will make. To facilitate the analysis we will typically

transform the data from a wide format as displayed in table 1 to a long format as displayed in

21Note that the definition implies that (h, h) is a mirror pair if h is symmetric.
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Table 1: Example of experimental data and planned comparisons

θS
pre θS

post history sender type mirror pair id

0.3 0.6 h upward biased 12
0.5 0.45 h’ upward biased 12
0.7 0.3 h” aligned 31
0.3 0.7 h”’ aligned 31

Table 2: The long version of Table 1

θS period history sender type mirror pair id I(reference history)
I(comparable to
reference pre report)

0.3 pre h upward biased 12 1 1
0.6 post h upward biased 12 1 0
0.5 pre h’ upward biased 12 0 0
0.45 post h’ upward biased 12 0 1
0.7 pre h” aligned 31 1 1
0.3 post h” aligned 31 1 0
0.3 pre h”’ aligned 31 0 0
0.7 post h”’ aligned 31 0 1

table 2. The long format has only one column for the sender report θS which can either denote

a report for the pre or post period probability of success. It doubles the size of the experimental

data, as we have two reports (one pre and one post) for each sender and round. We will specify

the same models as in the parametric approach but, instead of controlling for δ2θ
DO
t we will

include mirror pair dummies πp,comp. The mirror pair fixed effect indicator, πp,comp, differs by

two variables, the pair id p and a binary indicator comp ∈ {0, 1} which varies within mirror

pairs. The reason is that not every parameter between two histories is comparable. Instead, we

can only compare the pre report of a history to the post report of the mirror history. For that

reason we define for each mirror pair a reference history that we use to construct the indicator in

the fixed effect to absorb differences in average reporting between the two possible θ reports for

each history. For example, in table 2, h is the reference history for mirror pair 12. The pre report

of the reference history is comparable to the post report of the nonreference history. Therefore,

the indicator I(comparable to reference pre report) is 1 in rows 1 and 4 of the table and 0 in rows

2 and 3. Similar comparisons apply to mirror pair 31, where h′′ is the reference history.

In comparison to the parametric approach, in the nonparametric approach we do not assume

that senders know the data optimal model and choose their message accordingly. Instead, we

only assume that, absent any incentives to bias the report away from the data-optimal message

and concerns for truth-telling, senders will send a message after seeing history h that mirrors

their message after seeing message h′ if (h, h′) are a mirror pair.
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A.3 Theoretical framework

This section sketches a framework that guides our secondary hypotheses. The framework largely

follows S&S but is in some ways adjusted to our setting.

Consider a sender whose goal is to persuade a receiver of a certain model. The sender and

receiver observe a history of outcomes h. The history records for each of ten years t the success

(ωt = 1) or failure (ωt = 0) of a company, which is generated by a true data generating model

mT . A model consists of a year of change c ∈ {2, 3, . . . , 8}, a pre-change success probability

θpre ∈ [0, 1] and a post-change success probability θpost ∈ [0, 1]. The company’s outcome in

each year up to the year of change is drawn from a binomial distribution with success probability

θpre. In years t > c, the company’s outcome is drawn from a binomial distribution with success

probability θpost. We will use “pre period” to describe the range of years up to the year of change

and “post period” to describe the range of years after the year of change. The timing of the game

is as follows:

(i) Nature draws three parameters (cT , θT
pre, θ

T
post) that form the true data generating model.

Each of the parameters is drawn from a uniform distribution and is uncorrelated with the

other parameters.

(ii) The true data generating model generates a history h.

(iii) The receiver observes h and draws a default model mD from a distribution function

M(c, θpre, θpost|h).

(iv) The sender observes h and sends a model mS = (cS , θS
pre, θ

S
post) to the receiver.

(v) The receiver decides whether to adopt the sender’s model. In case the receiver accepts,

they make a report θS
post. Otherwise, they report the value θD

post of the default model.

(vi) Sender payoffs realize.

Following S&S, we consider the receiver to be a nonstrategic agent who decides as if their

objective is to adopt the most compelling model. Models can be evaluated by their fit, which we

take to be equal to the value of the log likelihood function evaluated at the model parameters.22

For a history that is generated as described above, the log likelihood function is

ll(c, θpre, θpost) = kpre(c)log(θpre)+ fpre(c)log(1−θpre)+kpost(c)log(θpost)+ fpost(c)log(1−θpost).23

In the equation, kpre(c) =
∑c

t=1 ωt denotes the number of successes and fpre(c) = c − kpre(c)

22As discussed in section A.1, this is how a Bayesian agent would choose among models in our setting.
23Here and in the following, we usually do not condition functions on a particular history h to save notation.
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denotes the number of failures in the pre-period. The values kpost(c) =
∑10

t=c+1 ωt and fpost(c) =

10 − c − kpost(c) similarly denote the number of successes and failures in the post period. For

a given year of change c, there is always one pair (θpre, θpost) that maximizes the log likelihood

function. We denote these likelihood maximizers by θ̂pre(c) and θ̂post(c). Closed-form solution

exist. In period p, the likelihood maximizer given c is equal to the number of successes divided

by the total length of the period; θ̂p(c) = kp(c)/(kp(c)+ fp(c)). The following discussion assumes

that the log likelihood function has a unique optimum.24 We call the model that maximizes the

log likelihood function the data-optimal model and denote it by mDO = (cDO, θ̂DO
pre , θ̂

DO
post). Most

of the time, the data-optimal model will be different from the true data-generating model.

Receiver types The receiver’s type depends on the drawn default model.25 The distribution of

default models implies a distribution of log likelihood function values with c.d.f. G(`) and p.d.f.

g(`). For simplicity, we assume that g has full support over all possible values of the likelihood

function, i.e., g(`) > 0 for all ` ∈ (−∞, ll(mDO)]. The default model is private information to the

receiver, though the sender knows that its log-likelihood value is distributed according to G(`).26

Sender types The sender can either be aligned, upward biased or downward biased. The re-

ceiver’s report will determine the sender’s payoff in different ways, depending on the sender’s

type. In particular, the receiver’s report θR
post maps into the sender’s payoff according to a scoring

rule

1 − (ϕ − θR
post)

2.

This rule assigns the sender the maximum score whenever the receiver reports sender’s target ϕ.

If the sender is aligned ϕ is equal to θT
post, if the sender is upward biased ϕ is equal to 1, and if

the sender is downward biased ϕ is equal to 0. Since the receiver adopts the sender’s model if it

provides at least the same fit as the default model, the sender’s expected utility from sending a

model mS is

u(cS , θS
pre, θ

S
post; h, ϕ) = P(ll(cS , θS

pre, θ
S
post) ≥ `)[1 − (ϕ − θS

post)
2]

+ P(ll(cS , θS
pre, θ

S
post) < `)E[1 − (ϕ − θD

post)
2|ll(cS , θS

pre, θ
S
post) < `].

In the equation above, E[1 − (ϕ − θD
post)

2|ll(cS , θS
pre, θ

S
post) < `] is the sender’s expected payoff

when the receiver does not adopt the sender’s model. We make the simplifying assumption that

the sender believes this expectation term to be equal to a value x ∈ (0, 1), which is independent

24This holds for almost all possible histories. Degenerate histories like (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), for which any year
can be part of a data optimal model, are the exceptions.

25This is a major difference between our framework and S&S, who assume only one type of receiver.
26As will become clear later, this assumption could be relaxed by quite a bit without qualitatively changing the

results. What is important is that the sender knows that (i) the receiver holds a default model that might not be equal
to the data-optimal model and that (ii) the receiver adopts the sender’s model whenever the sender’s model has a log
likelihood value at least equal to the receiver’s default model.
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of the sender’s message.27 Plugging in G(`) and the sender expectation, the sender’s expected

utility function is equal to

u(cS , θS
pre, θ

S
post; h, ϕ) = G(ll(cS , θS

pre, θ
S
post))[1 − (ϕ − θS

post)
2] + (1 −G(ll(cS , θS

pre, θ
S
post)))x.

The maximization problem can then be written as

max
c,θpre,θpost

G(ll(c, θpre, θpost))(1 − x − (ϕ − θpost)2).

A.3.1 Analysis

We analyse sender behaviour. In the first part of the analysis we focus on a misaligned, i.e.,

upward or downward biased sender. We extend the results to the aligned sender at the end of the

section. Throughout the analysis, we will often benchmark sender strategies by comparing them

to the strategy that communicates the data-optimal model mDO. Since G(ll(cDO, θDO
pre , θ

DO
post)) = 1,

the receiver always adopts the data-optimal model upon reception. In the analysis below, we

somewhat informally assume that x, the sender’s payoff when the receiver does not adopt the

sender’s model, is close to zero. We do not believe that this is a meaningful restriction: For any

x, all the results below would go through under the qualifier that the sender only chooses among

models which induce a scoring rule payoff 1 − (ϕ − θR
post)

2 ≥ x.

The sender faces a conflict between an accuracy motive which induces them to communicate

a model with a high fit that is likely adopted by the receiver, and a direction motive to convince

the receiver to report a particular value of θpost. We start with a result that naturally follows

from the accuracy-direction tradeoff. The sender only communicates a non data-optimal θpost if

it increases the direction motive.

Observation 1. Consider the choice of the optimal θS
post:

(i) An upward biased sender chooses a θS
post ≥ θ

DO
post.

(ii) A downward biased sender chooses θS
post ≤ θ

DO
post.

Proof. Consider case (i). The data-optimal model dominates the choice of any model

(c′, θ′pre, θ
′
post) with θ′post < θDO

post because any such alternative model decreases accuracy and

direction motives. Any model (c′′, θ′′pre, θ
′′
post) with θ′′post > θDO

post instead decreases the accuracy

motive but (weakly) increases the direction motive. The claim follows. A symmetric argument

can be made for case (ii). �

27This is a simplifying assumption as, in principle, knowing that the receiver does not adopt a certain model might
be informative about the value of θD

post. While we are aware of this possibility, we regard it as second-order. The
assumption above awards us with tractability and allows us to focus on the direct effects of the sender’s report.
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The direction motive only applies to θpost but not to θpre. It follows that any sender, regard-

less of type, will always communicate the likelihood maximizer of θpre conditional on the year

of change.

Observation 2. For any type of sender who chooses any year of change cS , θS
pre is equal to

θ̂pre(cS ).

Proof. The value of θpre affects the expected utility function only through the effect it has on

ll(·) (the accuracy motive). It follows that choosing the value θpost which maximizes the log

likelihood is optimal. �

We now turn to the choice of the optimal cutoff cS . Consider a sender who considers to

communicate the data-optimal model with year of change cDO. It turns out that the sender only

considers alternative years of change if they can better rationalize a θpost in line with the direction

motive.

Observation 3a. Consider how an upward biased sender chooses the optimal cS :

(i) For years c′ > cDO the sender prefers a model with year c′ over a model with year cDO if

and only if:

• fpost(c′) < fpost(cDO) and

• θS
post > θ̃2(c′), where θ̃2(c′) is a critical value on (θ̂post(cDO), 1).

(ii) For years c′ < cDO the sender prefers a model with year c′ over a model with year cDO if

and only if:

• kpost(c′) > kpost(cDO), θ̂post(c′) > θ̂post(cDO), and

• θS
post ∈ (θ̃L

2 (c′), θ̃H
2 (c′)), where θ̃L

2 (c′) > θDO
post and θ̃L

2 (c′) ≤ θ̃H
2 (c′) ≤ 1 are two critical

values.

Proof. Let us denote the empirical successes and failures implied by the data-optimal model

by kDO
j and f DO

j (for j ∈ {pre, post}). We compare the data-optimal model to a model

m′ = (c′, θ′pre, θ
′
post) with c′ , cDO and implied empirical successes and failures k′j and f ′j . Since

mDO maximizes the log likelihood function, it follows that ll(cDO, θDO
pre , θ

DO
post) > ll(c′, θ′pre, θ

′
post)

for any m′. Therefore, any model with cutoff c′ can only lead to an increase in the sender’s

expected utility if it increases the direction motive. For an upward biased sender, m′ induces a

higher direction motive if θ′post > θDO
post. We show conditions under which the sender prefers to

communicate a model (c′, θ′pre, θ
′
post) over (cDO, θDO

pre , θ
′
post). As both models have the same direc-

tion motive, the sender prefers the first to the second model only if the log likelihood difference
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ll(c′, θ′pre, θ
′
post) − ll(cDO, θDO

pre , θ
′
post) > 0 is positive. This difference has a number of impor-

tant properties. First, consider the value of the difference when evaluated at θDO
post. Since mDO

maximizes the log likelihood function, it follows that ll(c′, θ′pre, θ
DO
post) − ll(cDO, θDO

pre , θ
DO
post) < 0.

Second, the sign of the derivative of the difference with respect to θ′post when evaluated at θDO
post

depends on likelihood maximizer of θpost under the alternative model, θ̂post(c′), as follows:

∂ll(c′, θ′pre, θ
DO
post)

∂θpost
−
∂ll(cDO, θDO

pre , θ
DO
post)

∂θpost

≤ 0 if θ̂post(c′) ≤ θDO
post

> 0 if θ̂post(c′) > θDO
post.

In both cases, the derivative of the log likelihood evaluated at the data-optimal model is zero,

since it is evaluated at the optimum. The sign of the difference is then fully determined by

the sign of the log likelihood derivative evaluated at the alternative model. It is negative if

θ̂post(c′) < θDO
post (the log likelihood is past its peak) and positive if θ̂post(c′) > θDO

post (the peak is

still to come). Another important property of the log likelihood functions is that they cross at

most once for values of θpost ∈ [0, 1]. We show this by taking the derivative of the log likelihood

difference with respect to θpost;

∂ll(c′, θ′pre, θpost)

∂θpost
−
∂ll(cDO, θDO

pre , θpost)

∂θpost
=

k′post − kDO
post

θpost
+

f DO
post − f ′post

1 − θpost
.

Note that, if they are nonzero, the two terms on the right hand side always have the opposite sign

because either kDO
post ≥ k′post and f DO

post ≥ k′post or kDO
post ≤ k′post and f DO

post ≤ k′post (in both cases, at

least one inequality is strict). Setting the derivative equal to zero and rearranging, we find that

θ0
post

1 − θ0
post

=
kDO

post − k′post

f DO
post − f ′post

,

which implies a unique θ0
post as a solution. This value is equal to

θ0
post =

kDO
post − k′post

kDO
post − k′post + f DO

post − f ′post
.

The log likelihood difference can thus either increase, decrease, first increase and then decrease

or first decrease and then increase for θpost ∈ [0, 1]. We now distinguish between a number of

cases that determine the shape of the log likelihood difference.

Case 1: k′post = kDO
post. The critical value θ0

post is equal to zero. It directly follows that the

likelihood difference is monotone. If θ̂post(c′) > θDO
post ( f ′post < f DO

post) it increases, if θ̂post(c′) <

θDO
post ( f ′post > f DO

post) it decreases.

28



Case 2: k′post > kDO
post and f ′post > f DO

post. The derivative of the log likelihood difference changes its

sign at θ0
2. We ask whether θ0

2 ≷ θ
DO
post. Plugging in values, this is equivalent to showing whether

kDO
post − k′post

kDO
post − k′post + f DO

post − f ′post
≷

kDO
2

kDO
2 + f DO

2

.

After rearranging, we find that

θ0
2 > θ

DO
post if θ̂post(c′) > θDO

post and θ0
2 ≤ θ

DO
post if θ̂post(c′) ≤ θDO

post.

Since we know the sign of the derivative at θDO
post, this pins down the whole shape of the derivative;

it first increases and then decreases.

The additional cases f ′post = f DO
post and k′post < kDO

post and f ′post < f DO
post follow in a similar way.

We summarize the results in the table below.

Table 3: Shape of the log likelihood difference for different parameter combinations

k′post = kDO
post k′post > kDO

post and f ′post > f DO
post f ′post = f DO

post k′post < kDO
post and f ′post < f DO

post

θ̂post(c′) > θDO
post Increasing

First increasing, then decreasing

Peak at θ0
post > θ

DO
post

Increasing
First decreasing, then increasing

Minimum at θ0
post < θ

DO
post

θ̂post(c′) ≤ θDO
post Decreasing

First increasing, then decreasing

Peak at θ0
post ≤ θ

DO
post

Decreasing
First decreasing, then increasing

Minimum at θ0
post ≥ θ

DO
post

As a final property of the log likelihood difference, when taking the limit of θpost → 1 we

find that

lim
θ′post→1

[
ll(c′, θ′pre, θ

′
post) − ll(cDO, θDO

pre , θ
′
post)

]
= lim

θ′post→1
log(1 − θ′post)( f ′post − f DO

post) + κ, (5)

where κ is a number independent of θpost. Since lim
θpost→1

log(1 − θpost) = −∞, the difference is

positive in the limit if f DO
post > f ′post and negative if f DO

post < f ′post.

This discussion has a number of implications for sender strategies. Consider the first row of

table 3 where θ̂post(c′) > θDO
post.

• If k′post = kDO
post it must be that f ′post < f DO

post. Since the difference is positive in the limit

as θ′post becomes large, there is one value θ̃2 ∈ (θDO
post, 1) so that a model that couples

θS
post > θ̃post with c′ has a larger likelihood than a model with cDO.

• If k′post > kDO
post and f ′post > f DO

post there might be a range of values between (θDO
post, 1) for

which a model that couples a θS
post in that range with c′ has a larger likelihood than a

model with cDO.
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• If f ′post = f DO
post the difference is increasing. From equation (5), a value θ̃post ∈ (θDO

post, 1)

under which a model with c′ and θS
post > θ̃2 has a larger likelihood only exists if κ > 0.

• If k′post < kDO
post and f ′post < f DO

post there is one value θ̃post ∈ (θDO
post, 1) so that a model that

couples θS
post > θ̃post with c′ has a larger likelihood than a model with cDO.

Consider the second row of table 3 where θ̂post(c′) ≤ θDO
post.

• If k′post = kDO
post or f ′post = f DO

post an upward biased sender would never choose the model c′

since its likelihood is lower than that of the data-optimal model for all values θS
post ≥ θ

DO
post.

• If k′post > kDO
post and f ′post > f DO

post then the difference starts decreasing before θDO
post. Since

it is negative at θDO
post, there is no θS

post ≥ θDO
post where the alternative model has a higher

likelihood.

• If k′post < kDO
post and f ′post < f DO

post there is one value θ̃2 ∈ (θDO
post, 1) so that a model that

couples θS
post > θ̃post with c′ has a larger likelihood than a model with cDO.

Finally, note that c′ < cDO if and only if k′post ≥ kDO
post and f ′post ≥ f DO

post and that c′ > cDO if

and only if k′post ≤ kDO
post and f ′post ≤ f DO

post. The above considerations imply the claims in the

observation. �

This result puts restrictions on the years of change an upward biased sender is willing to

communicate. In words, the observation says that a sender will only choose a later year if the

later year implies fewer failures in the post period. Conversely, the sender will only choose an

earlier year if the earlier year implies more successes in the post period. Perhaps surprisingly, the

sender is slightly more constrained in choosing an earlier than a later year. The reason for this

asymmetry seems to be the following: As θpost becomes very large, the log likelihood function

puts a strong penalty on any failure in the second period so that this term dominates the function

value (intuitively, with a high θpost failures are difficult to explain). Therefore, a later year under

which fewer failures happen in the post period becomes more attractive. On the converse, an

earlier year does not lower the number of failures, which makes it unattractive for high values of

θpost.

Since, for a fixed θpost, the direction motive is held constant for any c, the sender prefers the

year of change which maximizes the log likelihood function. The figure below plots log likeli-

hood functions for different values of c and for an example history h = (0, 1, 1, 0, 0, 1, 1, 0, 1, 0).

The black line displays the log likelihood function with year of change 7. The figure shows

that, for intermediate values of θpost, this cutoff is dominated by a model with c = 5 (the gray

line) which adds two additional successes to the post period. For very high values of θpost both
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models are dominated by a model with a later year of change of c = 8, whose log likelihood is

displayed by the dashed line. This later year of change minimizes the number of failures in the

second period.

Figure 2: Log likelihood functions for different c

Note: The graph plots values of three log likelihood functions for
different values of θpost and for history h = (0, 1, 1, 0, 0, 1, 1, 0, 1, 0).
The black line plots the log likelihood of model (7, θ̂pre(7), θpost), the
grey line of model (5, θ̂pre(5), θpost), and the dashed line of model
(8, θ̂pre(8), θpost).

We obtain a similar result for the downward biased sender.

Observation 3b. Consider how a downward biased sender chooses the optimal cS :

(i) For years c′ > cDO the sender prefers a model with year c′ over a model with year cDO if

and only if:

• kpost(c′) < kpost(cDO) and

• θS
post > θ̃2(c′), where θ̃2(c′) is a critical value on (θ̂post(cDO), 1).

(ii) For years c′ < cDO the sender prefers a model with year c′ over a model with year cDO if

and only if:

• kpost(c′) < kpost(cDO), θ̂post(c′) < θ̂post(cDO), and

• θS
post ∈ (θ̃L

2 (c′), θ̃H
2 (c′)), where θ̃L

2 (c′) > θDO
post and θ̃L

2 (c′) ≤ θ̃H
2 (c′) ≤ 1 are two critical

values.

Having gained insight into the choice of cS , we close with an observation on the sender’s

optimal model
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Observation 4. Consider the sender’s choice of the optimal model (cS , θS
pre, θ

S
post). Denote

by cmax the year for which θ̂post(cmax) = max
{
θ̂post(c)

}
c∈{2,...,8}

and by cmin the year for which

θ̂post(cmin) = min
{
θ̂post(c)

}
c∈{2,...,8}

.

(i) The upward biased sender chooses a model for which either θS
post > θ̂post(cmax) or

ll(cS , θ̂pre(cS ), θS
post) ≥ ll(cmax, θ̂pre(cmax), θ̂post(cmax)) holds.

(ii) The downward biased sender chooses a model for which either θS
post < θ̂post(cmin) or

ll(cS , θ̂pre(cS ), θS
post) ≥ ll(cmin, θ̂pre(cmin), θ̂post(cmin)) holds.

Proof. Consider case (i). Suppose by contradiction that none of the conditions hold.

Then the sender could increase the accuracy and the direction motive by transmitting

model (cmax, θ̂pre(cmax), θ̂post(cmax)) instead of model (cS , θS
pre, θ

S
post), a contradiction. Start-

ing from a model with θS
post > θ̂post(cmax), the accuracy motive decreases when moving

to model (cmax, θ̂pre(cmax), θ̂post(cmax)). Starting from a model with ll(cS , θ̂pre(cS ), θS
post) ≥

ll(cmax, θ̂pre(cmax), θ̂post(cmax)), the direction motive decreases. Therefore, at least one but not

both conditions must hold. A symmetric argument can be made to show case (ii). �

Figure 3 plots log likelihood functions of an example history for all possible years of change.

It illustrates the upward biased sender’s problem to pick among combinations of c and θpost. The

black line displays combinations which are consistent with Observation 4. This line has gaps,

as some combinations are dominated by other combinations. For example, the data-optimal

model in the example has year cDO = 3, which makes any θpost to the left of the peak of its

likelihood function suboptimal. The cmax in this example is equal to 5, which is why the black

line continues without gaps vor values of θpost larger than θ̂post(5).

Aligned sender The direction motive of the aligned sender depends on the true data generating

model. For example, if θT
post < θDO

post, the aligned sender has an incentive to communicate a

θS
post smaller than the data-optimal value. Whether the aligned sender biases reports upward

or downward depends on whether the difference θT
post − θ

DO
post is smaller or larger than zero.28

Therefore, the same qualitative theoretical results as for the upward biased sender also hold

for the aligned sender when θT
post > θDO

post. When instead θT
post < θDO

post, the predictions for the

aligned sender follow those of the downward biased sender. We however note that the misaligned

senders represent extreme cases. Therefore, the predictions for the aligned sender would be

quantitatively smaller.

28This discussion largely ignores the case where θT
post = θDO

post, which is unlikely to ever be exactly true. We note
that in this unlikely case, the sender only has an accuracy motive, i.e., the sender will communicate the data-optimal
model.
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Figure 3: Combinations of c and θpost consistent with utility maximization, upward biased sender

Note: The graph plots values of log likelihood functions for all pos-
sible years of change, different values of θpost, and for history h =

(0, 1, 1, 0, 0, 1, 1, 0, 1, 0). The years at the top of the figure highlight
years that are optimal for values of θpost within the shaded area. The
black line highlights values of θpost that are consistent with utility max-
imization.

Observation 5a. If θT
post > θ

DO
post, part (i) of Observation 1 and Observation 3a also apply to the

aligned sender. If θT
post < θDO

post, part (ii) of Observation 1 and Observation 3b also apply to the

aligned sender.

Observation 5b. Consider the aligned sender’s choice of the optimal model (cS , θS
pre, θ

S
post).

Denote by cmax the year for which θ̂post(cmax) = min
{
|θT

post − θ̂post(c)|
}
c∈{2,...,8}

.

(i) The aligned sender chooses a model for which either |θT
post− θ̂post(c)| > |θT

post− θ̂post(cmax)|

or ll(cS , θ̂pre(cS ), θS
post) ≥ ll(cmax, θ̂pre(cmax), θ̂post(cmax)) holds.

A.4 Implications for the empirical analysis

The observations above provide benchmarks for sender behavior. In particular, we can measure

the percentage of biased sender messages that are consistent with parts (i) and (ii) of Observation

4 and, using Observation 5b, we can do a similar exercise for aligned senders.
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