
1 Pre-analysis simulations

Let Yip0q be the sales price if house i is sold in an auction, whereas Yip1q is the sales price if it is
sold through a real estate agent. Our goal is to estimate the average percentage change in price if
treated compared to being non-treated in the sample, which we call θ. For a sample of size n, we
have

θ “
1

n

n
ÿ

i“1

Yip1q ´ Yip0q

Yip0q
(1)

We will consider two different data generating processes. In the first, the individual treatment
effect is proportional to Y p0q, i.e.,

Yip1q “ θYip0q ñ θ “
Yip1q

Yip0q
(2)

In the second case, the individual treatment effect is additive, i.e.,

Yip1q “ Yip0q ` τ, (3)

in which case we have

θ “
1

n

n
ÿ

i“1

τ

Yip0q
(4)

In the power analysis we will consider a number of different estimators. The first is a simple
difference-in-means estimator evaluated at the average of the price in the control group. Let Wi

be a treatment indicator, taking a value of one if house i is treated and 0 if not and z

ĘY p1q “
1

n{2

řn
i“1WiYip1q and

z

ĘY p0q “ 1
n{2

řn
i“0p1´WiqYip0q, the estimator is

θ̂1 “
1

n{2

ˆřn
i“1WiYip1q ´

řn
i“0p1´WiqYip0q

řn
i“0p1´WiqYip0q

˙

(5)

A second alternative is to use the log approximation, i.e.,

θ̂2 “
1

n{2

˜

n
ÿ

i“1

Wi log Yip1q ´ p1´Wiq log Yip0q

¸

(6)

To estimate the parameter θ, we rely on random assignment of treatment, in which case Y p0q
should be the same in both treatment and control group in expectation. However, for any given
sample, there will always be some imbalance in Y p0q. By enforcing balance on observed covariates,
more efficient strategies are available. Traditionally, stratified treatmeant assignment has been used
to ensure balance on discrete covariates. Recently Morgan and Rubin (2012) proposed rerandom-
ization as a method to ensure balance also on continuous covariates. They show that the variance

1



in the estimation of the sample average treatment effect is inversely proportional to R2 in the linear
projection of Y p0q on the observed covariates if the covariates are perfectly balanced. That means
that if observed covariates are strong predictors of Y p0q, substantial efficiency gains can be made.

In our case, we expect the estimated market value (estimated before treatment assignment) to
be a very strong predictor for sales price. Ideally, we would therefore like to ensure balance on this
covariate. However, because houses are assigned to treatment or control one at a time, it is not
possible use rerandomization. Instead, we can use regression adjustment to improve efficency after
the experiment is carried out. For a recent discussion on regression adjustment in experiments, see,
e.g., Lin (2013). Let Xi be the estimated market value of house i (estimated before treatment is
assigned), we can simply run the following regression:

Y obs
i “ α̂0 ` α̂1Xi ` ε̂i, (7)

where Y obs
i is Yip1q for treated and Yip0q for controls. The estimator for θ is

θ̂3 “
1

n{2

ˆřn
i“1Wiε̂i ´

řn
i“1p1´Wiqε̂i

řn
i“0p1´WiqYip0q

˙

, (8)

where ε̂ are the residuals from the regression in equation (7). An alternative is to include estimated
market value and and a treatment indicator in the same regression:

Y obs
i “ β̂0 ` β̂1Xi ` β̂2Wi ` ûi, (9)

with the corresponding estimator for θ:

θ̂4 “
β̂2

řn
i“1p1´WiqYip0q

(10)

Finally, Imbens and Wooldridge (2009) suggest running the following regression:

Y obs
i “ δ̂0 ` δ̂1pXi ´ X̄q ` δ̂2pXi ´ X̄qWi ` δ̂3Wi ` v̂i. (11)

The estimator in our case is

θ̂5 “
δ̂3

řn
i“1p1´WiqYip0q

. (12)

Note that due to the randomization of W , the three estimators θ̂3, θ̂4 and θ̂5 are very similar and
should behave identically in large samples (for instance, Lin (2013) suggests that θ̂4 and θ̂5 are
asymptotically equivalent in forced balanced designs, i.e. when the sample size is the same for
treated and control).
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We can also estimate the corresponding log-versions of these three estimators:

log Y obs
i “ α̂10 ` α̂

1
1 logXi ` ε̂

1
i ñ (13)

θ̂6 “
1

n{2

˜

n
ÿ

i“1

Wiε̂
1
i ´

n
ÿ

i“1

p1´Wiqε̂
1
i

¸

, (14)

log Y obs
i “ β̂10 ` β̂

1
1 logXi ` θ̂7Wi ` û

1
i, (15)

and
log Y obs

i “ δ̂10 ` δ̂
1
1plogXi ´ĞlogXq ` δ̂12plogXi ´ĞlogXqWi ` θ̂8Wi ` v̂

1
i. (16)

To perform a power analysis, we make use of data on previous auction sales from Kronofogden
during the years 2010–2019. To mimic the proposed experiment we limit the sample to houses with
an estimated market value greater than 200,000 SEK. In total, there are 3,151 such sales in our
data. The data contain the sales price, the estimated market value and the tax value of each house.

Figure 1 shows the relationship between sales price and market value in this data. We see a
strong positive relationship between sales price and market value as expected, and it also seems
to be roughly linear. The R2 from the regression is 0.907 suggesting that there is large scope for
efficiency gains to be made by adjusting for market value. We can also note tax value has less
predictive power (analysis not shown here, see the replication code) with a R2 of 0.766. A multiple
regression with both these variables leave the R2 virtually unchanged (0.910) from just using market
value. Hence we conclude that we only need to condition on market value.

As discussed above, we also consider regressing log price on log market value. Figure 2 shows
this relationship. Once again, the relationship looks linear but also has less outliers. The R2 is still
very high but drops to 0.823.

Not all houses assigned to treatment will actually be sold with a real estate agent, but instead
sold at auctions. That is, we will have one-sided noncompliance. Our best guess (although it is
hard to know for sure) is that 20% of houses assigned to treatment will be sold at auctions. In
simulations, we mimic this situation by letting each house assigned to treatment have a 80% chance
of actually being treated. The estimand we use in the simulations will be the intention-to-treat
(i.e., in expectation 0.8θ), but in the paper we will, in addition, also estimate the average treatment
effect of the treated using IV. We do not expected there to be any large differences in power between
the two and we therefore focus on the intention-to-treat here.

We let the treatment effect follow equation (2) or (3) for different values of θ and τ , and we
begin by simulating the sampling distribution of the six different estimators by sampling n houses
from the 3,151 observations with replacement.

Table 1 shows results from simulations based on 10,000 draws. Results are shown for two sample
sizes, 700 and 2,000, for i) no treatment effect, ii) a multiplicative treatment effect of 10% and iii)
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a additive treatment effect of 50,000 SEK (implying a average percentage price increase of 13.8%).
We let the treatment and control grous be of the same size.

Looking first at Panel A with no treatment effect, we see that all estimators are centered at 0
as they should be. As expected θ̂1 and θ̂2 are much less efficient compared to the other estimators
and we also see that θ̂3 « θ̂4 « θ5 and θ̂6 « θ̂7 « θ8. In general, very little distinguishes the last six
estimators.

Turning to Panel B we have a multiplicative treatment effect of 10%. We expect θ̂1 θ̂3, θ̂4, θ̂5
to be unbiased (w.r.t. the intention-to-treat) and they seem to be. The other four should only be
approximately unbiased due to the log approximation and they very slightly underestimate the true
effect, although the bias is negligible. Other than that, conclusions are very similar to those based
on the results in Panel A.

Finally, in Panel C we see results when there is an additive treatment effect of 50,000 SEK,
implying an average percentage increase of 13.8% and an intention-to-treat of 11%. We now see
that θ̂1, θ̂3, θ̂4 and θ̂5 are clearly biased. The reason is that they estimate the percentage increase
evaluated at the mean of Y p0q. Because the percentage effect is much greater for smaller values,
and the distribution of houses is skewed to the left (so that the median house price is smaller than
the mean) the average percentage price increase is greater than the percentage increase for the
average priced house. The other estimators are slightly biased because of the log approximation.

Overall, we find that not controlling for market value is clearly inefficient, as we would expect,
so we do not consider the estimators θ̂1 and θ̂2 any further. Furthermore, while θ̂3, θ̂4, θ̂5 are good
estimators when the true effect is multiplicative, they clearly fail when the effect is additive. While
we believe a multiplicative effect is more plausible, we can not rule out that there could be some
additive element in the effect, and we therefore conclude that the log estimators are more robust
and therefore to be preferred. The difference betweem the three remaining estimators are negligible
and they will be discussed in more detail in the power analysis below.

1.1 Power analysis

Here we perform a power analysis by considering the three estimators θ̂6, θ̂7 and θ̂8. For each of the
three estimators, we perform standard asymptotic inference (Neyman-Pearson inference, t-tests) as
well as Fisher’s exact test of the sharp null of no individual treatment effects.

Results are shown in Table 2 for the same treatment effects as in Table 1, for various sample
sizes between 200 and 1,000. The first thing to note is that when there is no treatment effect the
size of the test is always correct. When it comes to power, for a 10% treatment effect, acceptable
power (80%) is achieved around a sample size of a little more than 1,000. For an additive treatment
effect of 50,000, a sample size of 700 is more than enough to achieve acceptable power.

We also note that the power from the six different tests are virtually identical. Together with
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Table 1: Monte Carlo simulations, 10,000 draws
n “ 700 n “ 2000

0.8θ mean sd 95% interval mean sd 95% interval

Panel A. No treatment effect
θ̂1 0 .005 .098 -.174 – .210 .002 .058 -.108 – .123
θ̂2 0 .000 .079 -.155 – .155 .000 .047 -.092 – .095
θ̂3 0 .000 .030 -.056 – .061 -.000 .018 -.034 – .036
θ̂4 0 .000 .030 -.056 – .061 -.000 .018 -.034 – .036
θ̂5 0 .000 .030 -.057 – .061 -.000 .018 -.034 – .036
θ̂6 0 -.000 .034 -.065 – .066 -.000 .020 -.040 – .040
θ̂7 0 -.000 .034 -.065 – .066 -.000 .020 -.040 – .040
θ̂8 0 -.000 .034 -.065 – .066 -.000 .020 -.040 – .040

Panel B. Multiplicative treatment effect, θ “ 0.1

θ̂1 .08 .085 .108 -.112 – .308 .083 .064 -.036 – .214
θ̂2 .08 .076 .080 -.080 – .233 .078 .048 -.015 – .171
θ̂3 .08 .079 .033 .017 – .145 .080 .019 .043 – .119
θ̂4 .08 .079 .033 .017 – .146 .080 .019 .043 – .119
θ̂5 .08 .080 .033 .017 – .147 .080 .019 .043 – .119
θ̂6 .08 .076 .034 .011 – .143 .076 .020 .037 – .116
θ̂7 .08 .076 .034 .011 – .143 .076 .020 .037 – .116
θ̂8 .08 .076 .034 .011 – .143 .076 .020 .037 – .116

Panel C. Additive treatment effect, τ “ 50, 000

θ̂1 .110 .041 .102 -.143 – .255 .037 .060 -.075 – .158
θ̂2 .110 .096 .078 -.054 – .251 .095 .046 .006 – .186
θ̂3 .110 .037 .031 -.022 – .099 .036 .018 .001 – .072
θ̂4 .110 .037 .031 -.022 – .100 .036 .018 .001 – .072
θ̂5 .110 .037 .031 -.023 – .100 .036 .018 .000 – .072
θ̂6 .110 .095 .031 .033 – .157 .095 .019 .059 – .132
θ̂7 .110 .095 .031 .034 – .157 .095 .019 .059 – .132
θ̂8 .110 .095 .031 .033 – .157 .095 .019 .058 – .132

Note: The table shows the average point estimate, the standard deviation of the empirical sampling distribution,
as well as a 95% interval of the empirical sampling distribution (2.5th percentile to 97.5th percentile).
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Table 2: Monte Carlo power analysis, 10,000 draws

n “ 200 n “ 300 n “ 400 n “ 500 n “ 700 n “ 1, 000

Panel A. No treatment effect
θ̂6 (Fisher) .052 .049 .049 .050 .048 .051
θ̂7 (Fisher) .052 .049 .049 .050 .048 .051
θ̂8 (Fisher) .052 .049 .049 .050 .048 .051
θ̂6 (Neyman-Pearson) .051 .049 .050 .050 .048 .050
θ̂7 (Neyman-Pearson) .051 .049 .050 .050 .047 .050
θ̂8 (Neyman-Pearson) .051 .050 .050 .050 .048 .050

Panel B. Multiplicative treatment effect, θ “ .1

θ̂6 (Fisher) .226 .308 .402 .476 .615 .771
θ̂7 (Fisher) .226 .308 .402 .476 .615 .771
θ̂8 (Fisher) .226 .308 .402 .476 .615 .771
θ̂6 (Neyman-Pearson) .228 .310 .404 .476 .616 .773
θ̂7 (Neyman-Pearson) .228 .310 .404 .477 .615 .773
θ̂8 (Neyman-Pearson) .228 .309 .403 .476 .615 .773

Panel C. Additive treatment effect, τ “ 50, 000

θ̂6 (Fisher) .343 .507 .613 .705 .848 .948
θ̂7 (Fisher) .343 .507 .613 .705 .848 .948
θ̂8 (Fisher) .343 .507 .613 .705 .848 .948
θ̂6 (Neyman-Pearson) .342 .507 .610 .706 .849 .949
θ̂7 (Neyman-Pearson) .342 .507 .610 .706 .850 .949
θ̂8 (Neyman-Pearson) .345 .508 .612 .707 .850 .949

Note: Tests are performed at 5% significance level. For the Fisher test of the sharp null, the randomization
distribution has been approximated with a draw of 1,000 randomly selected treatment assignments from one side
of the lexicographic ordering (thereby implicitly including mirror allocations).
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the results from Table 1, this fact suggests that it does not matter for the results which of the three
estimators that are used and whether asymptotic or exact inference is used. For the rest of the
analysis, we therefore restrict attention to one estimator (θ̂6) using Fisher’s exact test, though the
results carry over to any of the other five tests.

We continue the power analysis by considering two different ways of splitting a sample into
treatment and control. In the first, we continue with a balanced design with equal number houses
in the treatment and control groups. In the second, we instead let n{1.8 houses go to treatment
and 0.8n{1.8 go to control, which would imply that the number of actually treated is the same as
the number in the control group in expectation.

Figure 3 shows the result. The top panel shows results for multiplicative treatment effects,
while the bottom panel shows for additive treatment effects. Each graph corresponds to a different
sample size. The horizontal line is at 0.8 to indicate sufficient power. The first thing to note is that
the balanced and unbalanced designs give virtually identical power in all situations. Therefore, the
experiment will use a balanced design as it is the simplest to implement in the field. Second, to
achieve sufficient power, a sample size of 500 is needed to detect a 15% price increase, a sample
size of 700 is needed to detect a 12.5% price increase while a little more than 1,000 observations
are needed for a 10% price increase. When the treatment effect is additive, a sample size of 700 is
sufficient to detect a 50,000 SEK price increase.

2 Conclusions

When choosing the sample size to use, we need to weigh the need to get sufficient power with the
cost and time of running the experiment. Balancing these two factors, we have chosen to run the
experiment on a sample size of 700 which, in our estimation, means the experiment will run for
approximately two years. We will use the balanced design with half the sample being assigned to
treatment and half to control in the manner outlined in the registration form under the headline
“Experimental Design”. The analysis above suggests that the three estimators θ̂6, θ̂7 and θ̂8 are
virtually identical and that it does not matter whether Fisher or Neyman-Pearson inference is used.
To test whether the treatment has any causal effect, we will use an exact test of the sharp null, as
it does not rely on any asymptotic arguments. We will use the simplest estimator, θ̂6, in that case.
To be able to construct confidence interval we will also use regression to estimate θ̂8, which is the
most flexible estimator, and use standard asymptotic (Neyman-Pearson) inference.
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Appendix: code and data
We include code and data to replicate the above analysis. The data file is called sim_data.csv
which include sales price, market value and tax value for Kronofogden sales of houses with estimated
market value above 200,000 SEK during the period 2010–2019. We include three scripts: two Julia
scripts and one Stata do-file script, all included in this appendix. Julia (v1.0.3) was used for the
simulations and Stata (version 15) was used to generate figures:

1. replication_code_table1.jl reads prep_data.csv and produces table1_sim.csv which
contains all the data for Table 1.

2. replication_code_table2.jl reads prep_data.csv and produces table2_sim.csv which
contains all the data for Table 2 and Figure 3 (see below). Note that this script takes quite
some time (roughly 20 hours) to run on a standard desktop computer.

3. replication_code_figures.do run regressions to get R2 and generates Figures 1, 2 and 3.
This script reads table2_sim.csv, so it requires replication_code_table2.jl to have run
first to generate the data used for Figure 3.
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replication_code_table1.jl
using CSV
using Random
using Statistics
using Distributions
using DataFrames

function get_estimates(y0, y1, x, n0, n1, share_never_takers)
n = n0 + n1
treat_index = collect(1:n1)
control_index = collect(n1+1:n0+n1)
yobs = gen_yobs(treat_index, control_index, n0, n1, share_never_takers,

y0, y1)

theta1_hat = ((mean(yobs[treat_index]) - mean(yobs[control_index])) /
mean(yobs[control_index]))

lnyobs = log.(yobs)
theta2_hat = mean(lnyobs[treat_index]) - mean(lnyobs[control_index])

x_t = hcat(x, ones(n))
res = yobs .- x_t*inv(transpose(x_t)*x_t)*transpose(x_t)*yobs
theta3_hat = ((mean(res[treat_index]) - mean(res[control_index])) /

mean(yobs[control_index]))

b_est_sep = sep_reg(yobs, x_t, treat_index, control_index, n)
theta4_hat = b_est_sep / mean(yobs[control_index])

x_t_norm = copy(x_t)
x_t_norm[:, 1] = x_t_norm[:, 1] .- mean(x_t_norm[:, 1])
b_est_inter = inter_reg(yobs, x_t_norm, treat_index, control_index, n)
theta5_hat = b_est_inter / mean(yobs[control_index])

x_t_log = hcat(log.(x), ones(n))
res_log = (lnyobs .- x_t_log*inv(transpose(x_t_log)*x_t_log) *

transpose(x_t_log)*lnyobs)

theta6_hat = mean(res_log[treat_index]) - mean(res_log[control_index])
theta7_hat = sep_reg(lnyobs, x_t_log, treat_index, control_index, n)

x_t_log_norm = copy(x_t_log)
x_t_log_norm[:, 1] = x_t_log_norm[:, 1] .- mean(x_t_log_norm[:, 1])
theta8_hat = inter_reg(lnyobs, x_t_log_norm, treat_index, control_index, n)

return [theta1_hat, theta2_hat, theta3_hat, theta4_hat,
theta5_hat, theta6_hat, theta7_hat, theta8_hat]
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end

function gen_yobs(treat_index, control_index, n0, n1,
share_never_takers, y0, y1)

nr_never_takers = rand(Binomial(n1, share_never_takers), 1)[1]
never_takers_ind = sample(treat_index, nr_never_takers, replace=false)
yobs = copy(y0)
treated_index = setdiff(treat_index, never_takers_ind)
yobs[treated_index] = y1[treated_index]
return yobs

end

function sep_reg(Y, X, treat_index, control_index, n)
t = zeros(n)
t[treat_index] .+= 1
x = hcat(copy(X), t)
beta = inv(transpose(x)*x)*transpose(x)*Y
return beta[3]

end

function inter_reg(Y, X, treat_index, control_index, n)
t = zeros(n)
t[treat_index] .+= 1
x = hcat(copy(X), t)
x = hcat(x, x[:, 1] .* x[:, 3])
beta = inv(transpose(x)*x)*transpose(x)*Y
return beta[3]

end

function sim_estimates(y, x, n0, n1, rep, N_pop, te_type, te, s_nt)
n = n0 + n1
y0 = copy(y)
if te_type == "additive"

y1 = copy(y) .+ te
elseif te_type == "multiplicative"

y1 = copy(y) .* (te + 1)
end
out = Array{Any, 2}(undef, rep, 8)
for r = 1:rep

samp = sample(1:N_pop, n)
y1_s = y1[samp]
y0_s = y0[samp]
x_s = X[samp, :]
out[r, :] = get_estimates(y0_s, y1_s, x_s, n0, n1, s_nt)

end
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return out
end

function get_theta(y, te, te_type)
if te_type == "multiplicative"

return te
elseif te_type == "additive"

y0 = copy(y)
y1 = y0 .+ te
return mean((y1 .- y0) ./ y0)

end
end

input_filepath = "sim_data.csv"
output_filepath = "table1_sim.csv"
df = CSV.read(input_filepath)

Y = Float64.(convert(Matrix, df)[:, 1])
X = Float64.(convert(Matrix, df)[:, 2])
N_POP = size(df)[1]

Random.seed!(12345)

REP = 10000
SHARE_NEVER_TAKERS = 0.2
TE_TYPE_LIST = ["multiplicative", "multiplicative", "additive"]
TE_LIST = [0, 0.1, 50000]
N0_LIST = [350, 1000]

for N0 = N0_LIST
N1 = copy(N0)
for i = 1:length(TE_LIST)

TE = TE_LIST[i]
TE_TYPE = TE_TYPE_LIST[i]
estimates = sim_estimates(Y, X, N0, N1, REP, N_POP, TE_TYPE,

TE, SHARE_NEVER_TAKERS)

theta = get_theta(Y, TE, TE_TYPE)
itt = (1 - SHARE_NEVER_TAKERS) * theta
out = Array{Any, 2}(undef, 8, 11)
for i = 1:8

out[i, :] = [mean(estimates[:, i]), std(estimates[:, i]),
quantile(estimates[:, i], 0.025),
quantile(estimates[:, i], 0.975),
i, theta, itt, N0, N1, TE, TE_TYPE]

end
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df_out = DataFrame(out)
names!(df_out, Symbol.(["theta_hat", "sd_theta_hat", "lb_ci_theta_hat",

"ub_ci_theta_hat", "estimator_nr", "theta",
"itt", "n0", "n1", "treatment_effect",
"treatment_type"]))

if isfile(output_filepath) == false
CSV.write(output_filepath, df_out)

else
CSV.write(output_filepath, df_out, append=true)

end
end

end
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replication_code_table2.jl
using Distributions
using CSV
using Random
using Statistics
using DataFrames

function fisher_p_reg(y0, y1, x, n0, n1, set_size, share_never_takers)
n = n0 + n1
treat_index = collect(1:n1)
control_index = collect(n1+1:n0+n1)
yobs = gen_yobs(treat_index, control_index, n0, n1,

share_never_takers, y0, y1)
lnyobs = log.(yobs)
lnx = copy(x)
lnx[:, 1] = log.(x[:, 1])

res = lnyobs .- lnx*inv(transpose(lnx)*lnx)*transpose(lnx)*lnyobs

res1 = sum((res[treat_index] .- mean(res[treat_index])).^2)
res0 = sum((res[control_index] .- mean(res[control_index])).^2)
THETA6_HAT = Array{Float64}(undef, set_size)
THETA7_HAT = Array{Float64}(undef, set_size)
THETA8_HAT = Array{Float64}(undef, set_size)
se7 = 0
se8 = 0
for i = 1:set_size

if i == 1
THETA7_HAT[i], se7 = sep_reg(lnyobs, lnx, treat_index,

control_index, n, 1)
THETA8_HAT[i], se8 = inter_reg(lnyobs, lnx, treat_index,

control_index, n, 1)
end
THETA6_HAT[i] = mean(res[treat_index]) - mean(res[control_index])
THETA7_HAT[i] = sep_reg(lnyobs, lnx, treat_index, control_index, n, 0)
THETA8_HAT[i] = inter_reg(lnyobs, lnx, treat_index, control_index, n, 0)
ti = sample(2:n, n1 - 1, replace=false)
treat_index = append!([1], ti)
control_index = setdiff(1:n, treat_index)

end
THETA6_HAT_ABS = abs.(THETA6_HAT)
THETA7_HAT_ABS = abs.(THETA7_HAT)
THETA8_HAT_ABS = abs.(THETA8_HAT)

se6 = sqrt((res1 + res0) / (n0 + n1 - 2)) * sqrt(1 / n0 + 1 / n1)
t6 = abs(THETA6_HAT_ABS[1] / se6)
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rank_sort6 = sortperm(THETA6_HAT_ABS, rev=true)
rank_sort7 = sortperm(THETA7_HAT_ABS, rev=true)
rank_sort8 = sortperm(THETA8_HAT_ABS, rev=true)
p_val6f = findall(x->x==1, rank_sort6)[1] / set_size
p_val7f = findall(x->x==1, rank_sort6)[1] / set_size
p_val8f = findall(x->x==1, rank_sort6)[1] / set_size
p_val6np = ccdf(TDist(n0 + n1 - 3), t6) * 2
p_val7np = ccdf(TDist(n0 + n1 - 3), THETA7_HAT_ABS[1] / se7) * 2
p_val8np = ccdf(TDist(n0 + n1 - 4), THETA8_HAT_ABS[1] / se8) * 2
power6f = signif(p_val6f)
power7f = signif(p_val7f)
power8f = signif(p_val8f)
power6np = signif(p_val6np)
power7np = signif(p_val7np)
power8np = signif(p_val8np)

return [power6f, power7f, power8f, power6np, power7np, power8np]
end

function gen_yobs(treat_index, control_index, n0, n1,
share_never_takers, y0, y1)

nr_never_takers = rand(Binomial(n1, share_never_takers), 1)[1]
never_takers_ind = sample(treat_index, nr_never_takers, replace=false)
yobs = copy(y0)
treated_index = setdiff(treat_index, never_takers_ind)
yobs[treated_index] = y1[treated_index]
return yobs

end

function signif(p_val)
if p_val <= 0.05

sign = 1
else

sign = 0
end
return sign

end

function inter_reg(Y, X, treat_index, control_index, n, se_ind)
t = zeros(n)
t[treat_index] .+= 1
x = copy(X)
x[:, 1] = x[:, 1] .- mean(x[:, 1])
x = hcat(x, t)
x = hcat(x, x[:, 1] .* x[:, 3])
beta = inv(transpose(x)*x)*transpose(x)*Y
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if se_ind == 1
mse = sum((Y .- x * beta).^2) / (n - 4)
se_est = sqrt(mse * inv(transpose(x) * x)[3, 3])
return beta[3], se_est

else
return beta[3]

end
end

function sep_reg(Y, X, treat_index, control_index, n, se_ind)
t = zeros(n)
t[treat_index] .+= 1
x = hcat(copy(X), t)
beta = inv(transpose(x)*x)*transpose(x)*Y
if se_ind == 1

mse = sum((Y .- x * beta).^2) / (n - 3)
se_est = sqrt(mse * inv(transpose(x) * x)[3, 3])
return beta[3], se_est

else
return beta[3]

end
end

function sim_p(Y, X, n0, n1, set_size, rep, N_pop, te_type, te, s_nt)
n = n0 + n1
Y0 = copy(Y)
if te_type == "additive"

Y1 = copy(Y) .+ te
elseif te_type == "multiplicative"

Y1 = copy(Y) .* (te + 1)
end
out = Array{Any, 2}(undef, rep, 6)
for r = 1:rep

samp = sample(1:N_pop, n)
y1 = Y1[samp]
y0 = Y0[samp]
x = X[samp, :]
out[r, :] = fisher_p_reg(y0, y1, x, n0, n1, set_size, s_nt)

end
return out

end

input_filepath = "sim_data.csv"
output_filepath = "table2_sim.csv"
df = CSV.read(input_filepath)
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Y = Float64.(convert(Matrix, df)[:, 1])
X = Float64.(hcat(convert(Matrix, df)[:, 2], ones(length(Y))))
N_POP = size(df)[1]

Random.seed!(12345)

SET_SIZE = 1000
REP = 10000
SHARE_NEVER_TAKERS = 0.2
TE_TYPE_LIST = vcat(fill.(["multiplicative", "additive"], [7, 2])...)
TE_LIST = [0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 25000, 50000]
N_LIST = [200, 300, 400, 500, 700, 1000]
N1_LIST = round.(Int, 0.5 .* N_LIST)
N1_LIST = append!(N1_LIST, round.(Int, 1 / 1.8 .* N_LIST))
N0_LIST = append!(N_LIST, N_LIST) .- N1_LIST

for j = 1:length(N1_LIST)
N0 = N0_LIST[j]
N1 = N1_LIST[j]
for i = 1:length(TE_LIST)

TE = TE_LIST[i]
TE_TYPE = TE_TYPE_LIST[i]
power = sim_p(Y, X, N0, N1, SET_SIZE, REP, N_POP,

TE_TYPE, TE, SHARE_NEVER_TAKERS)
out = [mean(power[:, 1]), mean(power[:, 2]), mean(power[:, 3]),

mean(power[:, 4]), mean(power[:, 5]), mean(power[:, 6]),
N0, N1, TE, TE_TYPE]

df_out = DataFrame(reshape(out, 1, 10))
names!(df_out, Symbol.(["power6f", "power7f", "power8f",

"power6np", "power7np", "power8np",
"n0", "n1", "treatment_effect",
"treatment_type"]))

if isfile(output_filepath) == false
CSV.write(output_filepath, df_out)

else
CSV.write(output_filepath, df_out, append=true)

end
end

end
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replication_code_figures.do
import delimited using "sim_data.csv", clear

* Run regressions to get $R^2$
reg price market_value
reg price tax_value
reg price market_value tax_value

gen lnprice = ln(price)
gen lnmarket_value = ln(market_value)
reg lnprice lnmarket_value

* Generate figures
twoway || scatter price market_value, msize(vsmall) ///

|| lfit price market_value ||, ///
scheme(s1mono) legend(order(1 "sales price" 2 "fitted values")) ///
xtitle("Market value (m SEK)") ytitle("Sales price (m SEK)")

twoway || scatter lnprice lnmarket_value, msize(vsmall) ///
|| lfit lnprice lnmarket_value ||, ///
scheme(s1mono) legend(order(1 "sales price" 2 "fitted values")) ///
xtitle("Log market value (SEK)") ytitle("Log sales price (SEK)")

* Read file generated by Julia script "replication_code_table2.jl"
import delimited using "table2_sim.csv", clear

gen sample_size = n0 + n1
label variable sample_size "sample size"

twoway || connected power6f treatment_effect if n0 == n1, msize(small) ///
|| connected power6f treatment_effect if n0 != n1, msize(small) ///
|| if treatment_type == "multiplicative" , scheme(s1color) ///

by(sample_size) ytitle("Power") yline(0.8) ///
xtitle("Multiplicative treatment effect") ///
legend(order(1 "Balanced" 2 "Unbalanced"))

replace treatment_type = "additive" if treatment_effect == 0

twoway || connected power6f treatment_effect if n0 == n1, msize(small) ///
|| connected power6f treatment_effect if n0 != n1, msize(small) ///
|| if treatment_type == "additive" , scheme(s1color) ///

by(sample_size) ytitle("Power") yline(0.8) ///
xtitle("Additive treatment effect") ///
legend(order(1 "Balanced" 2 "Unbalanced"))
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