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Abstract

This document describes the design and analysis plan for evaluating the impact of a program
designed to increase access to safe drinking water on household water quality. The program
creates new, safe sources of drinking water in communities in rural Bangladesh. We evaluate
the effects of the program on behaviour with respect to access to safe drinking water — source
selection, transport distance, and storage practices — and how these changes in behaviour
determine household drinking water quality.

The goal of this document is to outline the key research questions and the specifications
to be used in the empirical analysis. This document was written before collection of follow-up
data. We do not exclude the possibility to conduct additional exploratory analyses. When
reporting results we will mark all analyses not planned ex-ante and therefore not included in
this document.

1 Motivation

SDG6 sets out the challenge of ensuring availability and sustainable management of water and
sanitation for all. However, access to safe drinking water remains limited, particularly in rural
areas where safe sources may be few and far between. In 2015, 663 million people worldwide still
lacked access to improved sources of drinking water; 1.8 billion people drank fecally-contaminated
water; and 1000 children a day died from diarrheal disease, associated with poor water quality and
sanitation (United Nations, 2016).

In Bangladesh, the focus of this evaluation, the problem of access to safe drinking water is
particularly acute. In the 1970s and 1980s, infant mortality in Bangladesh was extremely high,
largely as a result of high levels of diarrheal disease resulting from fecal contamination of surface
water, used for drinking. Education campaigns encouraged people to shift to obtaining drinking
water from groundwater sources instead, resulting in a decline in child mortality (Caldwell, Cald-
well, Mitra, & Smith, 2003). However, in the 1990s high but naturally-occurring levels of arsenic

∗anna.tompsett@ne.su.se

1



were discovered in the groundwater. Arsenic is undetectable without water quality tests. By the
time the arsenic contamination problem was discovered, an epidemic of diseases associated with
arsenic exposure was already established, called “the largest poisoning of a population in history”
by Smith, Lingas, and Rahman (2000). Despite years of effort by the Bangladeshi government,
non-governmental organizations and international aid agencies, progress on safe drinking water in
Bangladesh remains elusive (Human Rights Watch, 2016). Today, almost 100 million people still
drink fecally-contaminated water, and 39 million people drink water that is contaminated with
arsenic at international standards (BBS & UNICEF, 2015).

The magnitude of the problem of providing access to safe drinking water is clear. With respect
to arsenic contamination, the remedy is technically straightforward, albeit costly: switching to an
arsenic-safe source of drinking water. However, with respect to the reduction of exposure to fecal
contamination, there is far less consensus regarding the potential solutions. Drinking water may
be contaminated with pathogens at source, during transport from the source, or during storage
(Wright, Gundry, & Conroy, 2004). Disentangling these channels empirically is difficult because
households that live nearer safe water sources likely differ in other respects that also affect their
drinking water quality e.g. income or education. As a result, prior evidence is mixed as to which
of these channels is most important in determining bacterial contamination of household drinking
water (e.g. Fewtrell et al., 2005; Clasen, Roberts, Rabie, Schmidt, & Cairncross, 2006). Further,
in Bangladesh, recent studies raise the concern that efforts to reduce exposure to arsenic have had
the unintended consequence of increasing bacterial contamination of drinking water, via increased
transport and storage times associated with the use of more distant, arsenic-safe water sources
(Field, Glennerster, & Hussam, 2011; Wu et al., 2011).

These uncertainties make it more difficult to design effective interventions to improve access
to safe drinking water. In particular, they raise the risk that providing safer but more distant
sources may increase exposure to pathogens via contamination in transport. These questions are
particularly salient in Bangladesh, where policy-makers must design policy to reduce exposure to
arsenic contamination without increasing exposure to fecal/bacterial contamination. Our evaluation
will measure the causal impacts of source water quality and transport time on household water
quality in rural Bangladesh. The results from our study will inform policy to improve access to
safe drinking water in Bangladesh, and more broadly, to achieve SDG6 worldwide.

1.1 Program description

We evaluate the effects of a program designed to improve access to safe drinking water in rural
Bangladesh. The program consists of a package of subsidies and technical advice to build new
public sources of water, which provide drinking water that is free of both arsenic and bacterial
contamination. The new safe sources of water are deep tubewells, which draw water from aquifers
that are sufficiently deep to be safe from both bacterial contamination and arsenic contamination,
and we test all sources after installation to confirm that the water is arsenic free. Communities
decide the location of new water sources by consensus in community meetings. We offer to install
one new water source in smaller communities, and two new water sources in larger communities.

Treated communities are assigned to one of three contribution rules: a third of treated villages
were required to raise a cash contribution before installation; a third of treated villages were required
to contribute labour; and a third of treated villages received the program under a contribution
waiver. Our primary interest in this study is the average effect across the three contribution rules.
However, take-up varies under the three contribution rules, and the variation in take-up may be
important for statistical power.
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1.2 Key Research Questions

The key research questions we will evaluate are as follows:

1. What is the average effect of the program on household water quality, measured by:

(a) arsenic contamination in drinking water?

(b) fecal contamination in drinking water?

2. How does the program change behaviour with respect to obtaining water for drinking and
cooking?

(a) What is the average effect of the program on water quality of source used, measured by
source arsenic contamination?

(b) What is the average effect of the program on water quality of source used, measured by
source fecal contamination?

(c) What is the average effect of the program on distance walked to collect water?

(d) What is the average effect of the program on household water storage practices?

3. What is the causal effect of the behavioral channels on household water quality?

(a) What is the causal effect of water source quality on household water quality?

(b) What is the causal effect of transport distance on household water quality?

(c) What is the causal effect of storage practice on household water quality?

We note that we expect to have stronger causal evidence on Key Research Questions 3a and 3b
than regarding Key Research Question 3c, as we discuss further in section 3.3.

2 Research Design

2.1 Sampling

2.1.1 Sampling Frame

Our study is located in north-western Bangladesh, in Shibganj and Sonatala Upazilas in Bogra
District and in Gobindaganj Upazila in Gaibandha District. Within these Upazilas, we target
villages with high levels of arsenic contamination, using the limited data available to pre-select
villages and then refining selection using testing. We pre-selected a list of candidate villages for
the intervention on the basis of contamination levels reported in the available sources of arsenic
testing data. We had access to village-level data from the following data sources: (i) data from the
Bangladesh Arsenic Mitigation Water Supply Project (BAMWSP), which included a large tubewells
screening program conducted between 1999 and 2006; (ii) the assessment from the Department of
Public Health Engineering (DPHE) on the most arsenic contaminated villages in the Bogra region;
(iii) data collected in 2008 from the Bangladesh Social Development Services (BSDS). We pre-
selected as candidate villages for receiving our intervention all villages indicated by the DPHE or
for which BAMWSP or BSDS data reported a share of arsenic contaminated tubewells equal or
higher than 30%. We confirmed this initial selection by testing for arsenic contamination a small
sample of tubewells in the village.

For these candidate villages, we obtained the most updated list of resident households from
administrative sources. For logistical reasons, we implement the program in geographically defined
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treatment units of between 50 and 250 households; we use the terms treatment unit and community
interchangeably throughout this document. To define treatment units, we used available household
administrative lists in order to obtain village sizes, exclude from the study villages with less than 50
households and divide larger villages into several smaller treatment units along natural boundaries.
Following this process, we identified 192 candidate treatment units in 103 villages, of which 51 were
divided in two or more treatment units

We conducted a full census of existing sources of drinking water in these candidate treatment
units. We used the water source contamination data in order to finalize the selection of the treat-
ment units eligible for receiving the arsenic mitigation program. In particular, we excluded from
the study all treatment units with less than 15% of arsenic-contaminated water sources. We further
screened treatment units with less than 25% of arsenic-contaminated water sources, including them
in the program only if they presented a well defined cluster of contaminated water sources. To
evaluate these treatment units with between 15% and 25% contamination, we reviewed the maps
obtained from the water source census. We excluded treatment units where arsenic contaminated
water sources were geographically scattered, because in these cases all households in the village
already had a nearby source of arsenic-safe water. This process lead us to identify 171 eligible
treatment units, which is the final number of treatment units enrolled in the project.

We used the available household administrative lists in order to randomly sample 40 households
per treatment unit for the household survey. We accommodated cases when selected households
were not available for the interview or refused to participate by providing enumerators with a list
of “replacement households”, sorted in random order. Enumerators documented this replacement
process in the household list used by the enumerators and recorded outcomes in the survey form,
as they were required to fill in a form for all household that they tried to locate and conduct the
interview with.

In 92% of the cases the enumerators were able to conduct the interview with the household
originally sampled for participating in the household survey. When this was not possible, the
reason was that the household was not found in 33% of the cases, that noone was at home during
the visit from our enumerator in 65% of the cases, or that the respondent refused to participate
in the survey in 2% of the cases. Enumerators conducted the interview with the household head,
his spouse, or another adult representative of the household. They always asked for their informed
consent, both for the interview and, separately, for the water testing. 99.8% of households agreed to
the interview, and 99.6% to the water testing. At baseline, we successfully conducted the household
survey in a total of 6529 households across 171 eligible treatment units.

2.1.2 Statistical Power

We carry out power calculations by simulating follow-up data using baseline data, project
implementation data, and plausible parameter values and assumptions about behavioural change
(based on previous studies and our own experience). Intra-cluster correlation is modelled implicitly
via the true intra-cluster correlation in the baseline data. Where relevant, we cluster standard
errors by treatment unit. Our simulation is based on the following key assumptions: i) that
absent our program, approximately 1/3 households would switch water source between baseline
and follow-up; ii) that water quality in the new source would be a random draw from the baseline
distribution in that treatment unit; iii) that distance to the new source is a random draw between
the minimum distance to a source in the treatment unit and a 50% increase in walking distance.
These assumptions yield behavior that matches our previous studies, baseline data and qualitative
reports from the field.

117 treatment units are assigned to treatment under one of the three contribution conditions.
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We successfully installed water sources in 82 (70%) of these treatment units. Based on these
installation numbers, we simulate take-up of installed sources based on what households reported
to us at baseline about whether they would adopt a new safe source at a given distance from their
home. These assumptions yield aggregate take-up rates that are consistent with our previous work
(Madajewicz, Tompsett, & Habib, in preparation). We then simulate water source quality and
distance to a water source at follow-up. To simulate storage behavior at follow-up, we assume that
household storage behavior is correlated across time (using, as an imperfect proxy, the correlation
between a measure of habitual storage behavior and a measure of observed storage behavior at the
time of the baseline survey), and increases with distance to collect water. We use the correlation
between source and household arsenic levels at baseline to predict household arsenic levels at follow-
up. Finally, we use plausible effect sizes to simulate household bacteria levels at follow-up i.e. we
assume that switching to a bacteria-free source yields a 30% drop in contamination (Kremer et al,
2011); that walking an additional 100m to collect water increases risk of bacterial contamination
by 2%; and that storage increases the risk of bacterial contamination by 5%.

For the reduced form analyses, we find that our study has minimum detectable effects at the
5% level (2.8 x estimated standard deviation of coefficients) of: a 3.5% change in household arsenic
contamination; 3.8% change in household bacterial contamination; 2.4% change in source arsenic
contamination; a 2.8% change in source fecal contamination; an average change of 2.2m in walking
distance (7% of median distance to a water source at baseline); and 3% change in the rate of water
storage before drinking. These compare favorably to expected treatment effects.

2.1.3 Assignment to treatment

We randomly assigned the 171 candidate treatment units to four study arms. We assigned
42 candidate treatment units to a control group which received no intervention. We assigned
43 candidate treatment units to receive the safe drinking water program under one of the three
contribution requirements: (i) cash approach; (ii) labour approach; (iii) waiver approach. We
conducted the randomization at public lottery meetings, to which we invited representatives from
each eligible community. The randomization was stratified by Union Parishad to make it feasible
for representatives of the study communities to attend. The decision to use public randomization
was motivated by concerns about transparency, especially given that we offer the same program
under different conditions in different communities. We anticipated that information about the
different conditions would spread, and this was indeed the case. The public lottery meetings gave
our research staff an important source of legitimacy for project decisions taken.

Large treatment units were offered two tubewells; smaller treatment units were offered one
tubewell, using an algorithm to assign the number of tubewells as a function of the original village
size or of the treatment unit size.1

2.1.4 Attrition

Overall, we expect relatively low attrition i.e. we expect to find some members of the same
household in the same house in a large (>97%) percentage of cases. Since overall attrition is
expected to be low, differential attrition by treatment groups is also less likely. We did not expe-
rience differential attrition rates in a previous study with some similarities (Madajewicz et al., in
preparation).

1We designed the rules to allocate tubewells to achieve the goals of a parallel study regarding the effect of group
size on collective action. Specifically, we implemented one of two rules: i) we assigned tubewells to villages as a
function of village size, then divided these among the designated treatment units within each village; ii) we assigned
tubewells to treatment units to keep the ratio of households to tubewells as close as possible to 125:1.
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To minimize attrition, we build flexibility into our follow-up survey to schedule interviews with
households at the time of their convenience, and include a short confirmatory telephone survey
with any households who are reported to have migrated at the time of follow-up.

2.2 Fieldwork

2.2.1 Instruments

We collect data through a combination of surveys and a water quality testing program. Our data
match households to the water sources they use. We use a different approach to match households
to water sources at baseline and at followup. Our procedures for matching households to the
water sources they use are novel, because the problem of matching households to decentralized
infrastructure is not easy to solve. However, we extensively piloted the procedure in the field, and
additionally built a number of checks into the process.

At baseline, we first conducted a full census of existing sources of drinking water. In order to
identify all sources of drinking water, enumerators visited all households residing in the treatment
unit and asked for an exhaustive list of nearby water sources. We used the existing administrative
household list to structure the water source census, and collected information on households missing
from that list during the census process. We also included public water sources in the census.

We then conducted the baseline household survey in the randomly selected sample of house-
holds. The household survey consisted of a detailed interview on household’s composition, health,
wealth, network and habits related to water collection and use. Each household identified the water
source(s) used to obtain water for drinking or cooking purposes, selecting water sources from the
list established during the baseline water source census. We showed the respondent a picture of
each water source that he/she identified, to ensure that we correctly match households to water
sources. In case the respondent reported to use a water source not included in the water source
census data, we collected the relevant information from this new source. This happened in only 2%
of the household surveys, indicating a good coverage of the existing water sources from the census.

At followup, we do not repeat the water source census from baseline, because of the cost of this
exercise. Instead, we first conduct the household survey, and then collect data from all the water
sources that households describe using. To avoid resurveying water sources multiple times, we tag
each water source with a zip tie. If an enumerator visits a source that has already been surveyed,
they record a photograph and take GPS coordinates, enabling us to confirm the match to the water
source data already collected by another enumerator.

The water quality testing program consisted of three types of tests: (i) bacteria test; (ii) field
arsenic test; (iii) laboratory arsenic test. For bacteria and laboratory arsenic tests we used QR
barcodes to identify each water sample and to link the survey data with test results. The tests we
use are standard in the literature and have been used in previous studies of water quality.

We conducted the bacteria test for all water sources and for all households surveyed, provided
that the survey respondent agreed to the testing procedure.2 The water testing procedure for
bacteria contamination used hydrogen sulfide vials produced by NGO Forum for Public Health.
The test detects the presence of Escherichia coli in water. The vials should be kept at room
temperature for 48 hours, and the test is read as positive if the colour changed from clear to black.
The hydrogen sulfide test has been rigorously evaluated in Bangladesh by NGO Forum for Public
Health. We informed respondents about the bacteria test results when the results were ready, on
average two days after the water sample collection, by SMS. During the water source and household

2Of the households who consented to participate in the survey, only 3 households did not consent to the testing
procedure. For these households, the test results are set to missing.
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survey we asked respondents to provide us with a phone number to be used for sending by SMS
the results from the bacteria test. 99% of the respondents in the water source survey and 94% in
the household survey provided us with a phone number for further communications. Project staff
entered the bacteria test results on average after 2 days from the water sample collection, which
were promptly communicated to surveys’ respondents via automated SMS.

We conducted the field arsenic test for all water sources and for all households surveyed, provided
that the survey respondent agreed to the testing procedure. This testing procedure is implemented
in the field, and it uses the EZ Arsenic High Range Test Kit (Hach), which provides results in
20 minutes and measures arsenic levels within the range of 0-500 ppb (parts per billion) with the
following increments: 0, 10, 25, 50, 250, 500. Because test results are rightly available, at the
end of the survey we informed respondents about the result of the arsenic field test. Enumerators
gave a report card (in Bangla) to the owner/caretaker of the water source and to the households
participating in the household survey, reporting the date of the test, the result of the arsenic field
test and some guidelines on safety actions to take in case of bacteria or arsenic contaminated water.

This procedure for measuring arsenic levels in the field provides reliable results for water freshly
obtained from the source, but the ability of the test to detect the presence of arsenic in the water
decreases the longer the water is stored. Arsenic begins to oxidize once the water is stored in
a container that is open to the air, and the field test does not detect oxidized arsenic. During
the water source census we tested the water directly obtained from the source. We are therefore
confident about the accuracy of the field test. However, during the household survey we asked
respondents for a glass of water obtained in the same way household members would normally
obtain a glass of water for drinking i.e. either from storage or direct from the source, using the
same containers for transport that they normally use. This gives us a measure of the quality of
water normally used by households. However, for stored water, we were concerned that this might
underestimate arsenic levels, if the tested water had been stored for a long time.

For this reason, for a subset of households, we complemented this testing procedure with a labo-
ratory test conducted at the Water Quality Testing Laboratory (WQTL) of NGO Forum for Public
Health using Atomic Absorption Spectrophotometer (AAS). We randomly selected for the arsenic
laboratory test 10 households, out of the 40 sampled for the household survey, in 92 treatment
units. We stopped laboratory testing after 92 treatment units because of budget constraints, as
the lab tests are much more expensive (approximately 100 times) than the field tests. In total, we
tested in the laboratory 897 water samples collected during the household surveys. The field tests
are designed to be somewhat more conservative than the laboratory tests, because a false negative
has much more serious consequences for health than a false positive. However, when the results for
the two sets of tests are compared, they are highly correlated.

3 Empirical Analysis

3.1 Variables of interest

The main variables of interest are summarized in Table 1. Where multiple measures for a single
outcome variable are listed, the expected main measure is given in bold, and variables we will use
to provide corroborating evidence are listed in regular text.

Households may report using multiple sources. At baseline, the vast majority (96.5%) used
only one source of drinking water; 3.4% reported using two sources, and only 6 households reported
using three sources. It is possible, however, that the rate of multiple source use will increase as
a result of the intervention. The primarily analysis will aggregate the source quality and distance
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Table 1: Variables of interest

Evaluation Question Variables

1a Arsenic field test of household water above WHO standard (10ppb)
Arsenic field test of household water above Bangladeshi standard (50ppb)
Arsenic lab test of household water above Bangladeshi standard (50ppb)
Arsenic lab test of household water above WHO standard (10ppb)
Arsenic field test of household water result
Arsenic lab test of household water result

1b Indicator for fecal contamination of household water

2a Arsenic field test of source water above WHO standard (10ppb)
Arsenic field test of source water above Bangladeshi standard (50ppb)
Arsenic field test of source water result

2b Indicator for fecal contamination of source water

2c Calculated distance between household and primary water source
in metres
Reported distance walked to collect safe drinking water in minutes

2d Indicator for whether household is observed to obtain drinking
water from storage
Indicator for whether household reports regularly storing drinking water
Indicator for whether household reports/is observed storing water in an open
container
Indicator for whether household reports/is observed storing water at floor
level
Indicator for whether household reports/is observed scooping water from
storage container
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measures based on the fraction of drinking water drawn from each source3 to provide a measure
of average source quality and distance travelled. In robustness checks, we will test whether our
results are stable to including and excluding these households from the analyses; and to aggregating
information from multiple sources in different ways.

3.2 Balancing checks

We verify that treatment and control groups are balanced in terms of baseline characteristics.
To carry out these checks, we collapse the data to community-level means and regress the baseline
characteristic on a dummy for treatment, and Union Parishads (district) level dummies, reflecting
the stratification of randomization by Union Parishad.

ycb = βTc + ηd + εc (1)

where ycb is the mean value of characteristic y at baseline in community c, Tc is an indicator which
takes the value 1 if community c is assigned to treatment, and ηd is a Union Parishad fixed effect.
Standard errors are robust.

The variables we include in the balance checks include the main variables listed in bold in Table
1, as well as other socioeconomic factors that may predict access to safe drinking water or hygiene
behaviour. For the full set of variables included in the balance checks, we also test simultaneously
for joint significance of the differences in baseline characteristics by: i) reversing Equation 1 to
include village level characteristics on the right hand side and a treatment dummy on the left hand
side, and testing for joint significance of all baseline characteristics; and ii) conducting a Hotelling’s
T-squared test.

3.3 Treatment effects

3.3.1 Program effects

To causally estimate changes in average household water quality and in behaviour with respect
to obtaining water for drinking and cooking, we primarily estimate reduced form “intent-to-treat”
effects that exploit the random assignment of the program to treatment units.

∆yc = α+ βTc + ηd + εc (2)

where ∆yc is the change in outcome variable y between baseline and follow-up in community
c, Tc is an indicator which takes the value 1 if community c is assigned to treatment, and ηd
is a Union Parishad fixed effect. The estimated effects are the average effects of the program,
regardless of whether or not the program successfully installs water sources or not. These are the
treatment effects that are relevant to policy-makers. We include Union Parishad fixed effects to
reflect stratification in the original randomization. We use this approach to estimate effects for key
research questions 1 and 2.

3.3.2 Mechanisms

To analyze mechanisms in key research question 3, we take two approaches. Our first analysis
of mechanisms is a difference-in-difference approach where we evaluate how changes in household

3We ask households to calculate the number of times they collect water in a week, and the volume of water
collected each time.
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bacterial contamination vary with changes in source contamination, transport distance and storage.
For household i, we estimate:

FCh
if − FCh

ib = b0 + b1(FC
w
if − FCw

jb) + b2(DIST
w
if −DISTw

ib )

+ b3(STORAGEif − STORAGEib) + ηc + εi
(3)

where all variables are measured at baseline b and follow-up f ; FCh is fecal contamination in house-
hold i’s drinking water and FCw is fecal contamination in household i’s water source; DISTw is the
distance between household i and its drinking water source; and STORAGE is an indicator vari-
able for whether or not household i stores drinking water (as opposed to collecting drinking water
on demand). Where the household uses multiple water sources, the values of FCw and DISTw are
weighted averages across the sources the household reports using. ηc is a community-level dummy
variable that absorbs village-level average changes in the outcome variables and the right-hand side
variables. We will estimate versions of Equation 3 with and without these community-level dummy
variables, as there is no clear ex-ante reason to prefer one approach over the other.4 When we in-
clude the community-level dummy variables, Equation 3 only exploits within-community variation
in changes in the right-hand side variables to estimate causal effects.

The difference-in-difference yields causal estimates under the assumption that changes in the
right hand side variables are uncorrelated with other changes in household drinking water contam-
ination e.g. through changes in household hygiene practices. Such an assumption is not unrea-
sonable. However, although assignment to the safe drinking water program is random, selection
of locations for water source installation is determined, by consensus, at a community meeting.
As a result, it remains possible that changes in distance to collect drinking water, or source water
contamination, may be correlated with other changes that also affect household drinking water con-
tamination, through other channels. These confounding factors might in principle bias the above
analysis. To address this concern, we carry out a second, instrumental variables analysis which
exploits the experimental assignment of the safe drinking water program.

The instrumental variables approach uses baseline data to predict where in a village a community
will decide to install a water source. We predict location of constructed water sources using baseline
data using two methods. First, members of the research team in Stockholm inspect the map of
water sources and select a location or locations based on population density and existing source
quality. The research assistants who carry out this task do not have any information on final chosen
locations, and they follow the same procedure in treatment and control villages.

Second, we will also program an algorithm to similarly predict locations in treatment and control
villages. We do not fully pre-specify the details of this algorithm as we are testing several variants,
and do not rule out the possibility that we will be able to improve the predictive power of the
algorithm. The class of algorithms we will test are deterministic functions of baseline characteristics,
augmented by our knowledge of how communities take decisions. For example, candidate algorithms
might minimize the distance between all households in a treatment unit and the new location(s),
or the distance between households using arsenic-contaminated sources at baseline and the new
location(s). Alternatively, the algorithm might minimize the distance between households and their
nearest safe source. In all cases, we constrain the set of candidate locations to feasible locations
i.e. those that are on habitable (low flood risk land), defined by proximity to households and
pre-existing water sources.

We do prespecify the approach we will use to select between alternative algorithms, which is to

4Either approach may increase precision, depending on the exact structure of εi.
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inspect the partial R-squared from a regression at household level of distance to the nearest finally
selected location on distance to the nearest predicted location. We recorded the final selected
location in almost all treatment units (with the exception of one treatment unit which declined to
participate; and one treatment unit which did not reach a decision on a location), not only in those
treatment units where we were successful in installing a water source. We will identify improvements
to the algorithm or select between alternatives based on those algorithms which deliver the highest
partial R-squared. Importantly, this regression has no direct role in our final estimating strategy,
meaning that we lessen the risk of unintentionally introducing bias into our estimates by selecting
an instrument that happens to be correlated with unobservable variables that predict treatment
variables. For the same reason, we do not intend to use other approaches, such as machine learning
approaches to predict locations, in our main analysis. We will report specifications using alternative
algorithms in the case that we have several alternatives that perform similarly well. We will also
verify that distance to the nearest predicted location does not differ between treatment and control
villages,5 and does not correlate with baseline characteristics differently in treatment and control
villages.6

We then use the predicted source location to construct the following instruments. The first
instrument is predicted change in source fecal contamination, constructed as follows:

PRED
(
FCw

if − FCw
ib

)
= TAKEUP (Aswib, DIST

∗
i ) · (0 − FCjb) · Tc (4)

where TAKEUP is the average take-up rate for households with baseline source arsenic contam-
ination Asw and distance from nearest predicted location DIST ∗. We calculate average take-up
rates using the full dataset for treatment units where we successfully installed tubewells, calculat-
ing take-up rates for households categorized according to baseline source arsenic contamination7

and distance to the nearest installed source.8 We allow take-up rates to vary across these groups
because households with higher arsenic contamination at baseline report willingness to walk much
further to adopt a new source than households with no or low arsenic contamination. 0 − FCjb is
a measure of the change in source fecal contamination if a household adopted the new source; and
Tc is a dummy variable that is 1 if a household belongs to a treated community, and 0 otherwise.

The second instrument is the predicted change in distance to drinking water between baseline
and follow-up, constructed as follows:

PRED
(
DISTw

if −DISTw
ib

)
= TAKEUP (Asjb, DIST

∗
i ) · (DIST ∗i −DISTw

ib ) · Tc (5)

where DIST ∗i −DISTw
ib is the change in distance that household i would experience, if the

household adopted the new source, and if it were built at the optimal location.
We can then estimate the difference-in-difference equation (Equation 3) using predicted changes

as instruments for observed changes in source fecal contamination and distance to drinking water,
augmenting the difference-in-difference equation to include controls for the endogenous components

5We will estimate Equation 1 with distance to the nearest predicted location as an outcome variable.
6We will estimate Equation 1 augmented with distance to the nearest predicted source and its interaction with

the treatment dummy, for the same set of baseline characteristics as in the main balance checks, and confirm that
the coefficients on the interaction terms are consistent with the same prediction procedure in both treatment and
control villages.

7Categories are: no contamination, low arsenic contamination (above WHO threshold but below Bangladeshi
threshold) or high arsenic contamination (above Bangladeshi threshold).

8Estimated for intervals of approximately 1 minute walking time.
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of the instruments, as follows:

FCh
if − FCh

ib = b0 + b1(FC
w
if − FCw

ib) + b2(DIST
w
if −DISTw

ib )

+ b3(STORAGEif − STORAGEib)

+ b4TAKEUP (Aswib, DIST
∗
i ) · (0 − FCjb)

+ b5TAKEUP (Asjb, DIST
∗
i ) · (DIST ∗i −DISTw

ib )

+ ηc + εi

(6)

Conditional on these controls, instrument exogeneity follows from the inclusion of the treated
indicator, which is randomly assigned. Identification then follows from comparing changes in house-
holds with similar baseline characteristics in treated and control groups. Throughout, we cluster
standard errors at the treatment unit level to account for spatial correlation in outcome variables.
As with the difference in difference analysis, we will report results both with and without commu-
nity dummies. Additionally, we will report results from estimating Equation 6 with an additional
control for whether or not the treatment unit received treatment or not. Including this treatment
dummy should not alter the results under the assumption that treatment only affects fecal con-
tamination in household drinking water through changes in behaviour with respect to use of water
sources. If the results change, we will evaluate potential channels through which this assumption
could be violated, for example via reporting bias or other changes in hygiene behaviour.

In our simulated power calculations, we obtain Sanderson-Windmeijer first stage F-statistics of
more than 10 for both instruments in about 85% of simulations. However, the IV approach sacrifices
considerable power: the IV approach has minimum detectable effects that are approximately ten
times larger than the difference in difference approach. We will interpret the results from the IV
analysis with these limitations in mind.

3.4 Heterogeneous effects

A key source of heterogeneity in the effects of new water sources on household bacterial contam-
ination comes from heterogeneity in the effect of new water sources on water transport distance.
Households that previously walked a long way to collect safe water may walk a shorter distance as
a result of a new, nearby safe source. Households that previously collected water at a nearby unsafe
source may walk further to collect water, if a new safe source becomes available. This motivates
two heterogeneity analyses for the reduced form analyses (Key Research Questions 1 and 2).

For all heterogeneity analyses, we will re-estimate Equation 2 at the household level, with
weights constructed so that each treatment unit counts equally in the analysis, and model hetero-
geneous effects as follows:

By use of safe/unsafe sources at baseline Those already using safe sources are more likely
to reduce their distance to collect water, as they will only adopt a new source if it is closer to them
or otherwise more convenient to use. Those using unsafe sources are more likely to increase their
distance to collect water, because they may be willing to walk further to access safe water than they
are willing to walk to access unsafe water. To analyze heterogeneous effects by safety of baseline
source, we will construct categorical variables describing arsenic contamination levels at baseline:
no contamination, low contamination (10-50ppb), high contamination (50-100 ppb), and very high
contamination (>100 ppb). We will then include dummy variables for these categories of arsenic
contamination at baseline, and their interactions with the treatment dummy.
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By distance to the new source The effect on transport distance is likely to vary with distance
from the source. Since the source location is chosen by the community, we will use distance
to the predicted location as a proxy for distance to the constructed source. This analysis has
important equity implications for the planning of safe drinking water access projects. To analyze
heterogeneous effects by distance to the predicted location, we will categorize households into 5
quantiles by distance to the predicted location. We will then include dummy variables for these
categories of distance to the predicted location, and their interactions with the treatment dummy.
We will also report results for a similar analysis including distance to the predicted location and
its interaction with the treatment dummy.

We will report results with and without community-level dummies. The two sets of results
have slightly different interpretations. Without community-level dummies, the comparisons include
heterogeneous effects that are correlated with the community-average characteristics (for example,
a potentially greater likelihood of successful well installation in more highly-arsenic contamination
villages). When we include community-level dummies, the comparisons describe within-village
heterogeneity only.

We will also evaluate whether the estimated heterogeneous effects on these groups for Key
Research Questions 1 and 2 are consistent with the expected effect sizes implied by the results of
the analysis of Key Research Question 3.

Additionally, we will report heterogeneous effects for the poor (28% self-report status as poor
at baseline), as these results are of particular interest to policy makers. Similarly to the above, we
will analyze heterogeneity by including a dummy for self-reported status as poor at baseline, and
its interaction with the treatment dummy.

3.5 Standard Error Adjustments

Our main analyses will report cluster-robust standard errors, treating outcome variables as
correlated within treatment units. Additionally, we will report p values derived from randomization-
based inference, by randomly reshuffling treatment status 500 times and comparing the estimated
coefficients to the distribution of coefficients obtained under the randomization-based inference.

For each of the key research questions, we will report “näıve,” per comparison, p values (Kling,
Lieberman, & Katz, 2007). Since we test multiple hypotheses, there is therefore a possibility that
some of the comparisons which appear statistically significant occur due to chance. As a result,
we will also follow Westfall and Young (1992) and calculate adjusted p values which correctly
control the family wise error rate in the presence of correlated effects within each group of research
questions (1, 2 and 3).
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