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Abstract

Modern agricultural technologies can increase productivity and enhance resilience to climate

shocks. The efficiency of subsidies to boost technology adoption is debatable. Subsidization of

agricultural technologies could be justified in the presence of externalities (e.g., environmental or

learning externalities) or other market failures. Nevertheless, higher prices could improve targeting

through a screening effect. This research study aims to analyze the allocative efficiency of higher

prices by focusing on a new agricultural technology – improved wheat seed – that has been recently

introduced in Bangladesh. Using a randomized controlled trial (RCT), we examine whether charg-

ing higher prices causes farmers with lower actual returns to choose not to adopt. One innovation

of the study is that we use a two-step experiment to estimate whether actual returns are lower

among farmers that are unwilling to pay higher prices.

Timeline: The table below summarizes the timeline of the main activities.

Study Timeline

Activities Period

Pilot survey August-September 2021

Village census September 2021

Market survey September 2021

Baseline survey October - November 2021

Treatment intervention November 2021

First follow-up May 2022

Second follow-up April-May 2023

1



1 Introduction

Modern agricultural technologies represent an ideal case for examining the efficiency of price subsidies

as a policy tool for increasing productivity. Expected economic gains from new agricultural technologies

could make subsidization attractive for boosting adoption. For instance, Gollin et al. (2021) estimate

that delaying the introduction of Green Revolution technologies by ten years would have resulted in a

cumulative loss of $83 trillion to global GDP.1 Nevertheless, agricultural subsidy programs are often

criticized for their relatively high costs and questionable targeting of beneficiaries. Recent evidence

from the second wave of input subsidy programs in Sub-Saharan Africa shows that agricultural subsidies

can exhaust more than 25% of public spending on agriculture, and yet fail to target farmers who are

expected to benefit from subsidy programs the most (Jayne et al. (2018)). This raises an important

question: do lower agricultural subsidies induce self-targeting of farmers with higher marginal returns?

That is, absent of precise eligibility criteria, are there allocative efficiency gains from lowering subsidies

that can offset any losses from reduced adoption?

Two opposing forces are at play when policy makers decide whether to subsidize a new agricultural

technology. On the one hand, there can be a strong case for subsidization due to positive externalities

(both environmental and learning externalities) or constraints to adoption (such as credit, insurance,

and information constraints).2 On the other hand, subsidies represent a burden on public spending

and are prone to waste and leakage (Pan and Christiaensen (2012)). A subsidy to a new agricul-

tural technology could result in low average returns if farmers put less effort in using the subsidized

technology, or if the subsidy is allocated to farmers with low comparative advantage.

In this paper we examine the allocative efficiency of subsidizing an agricultural technology by

testing whether actual returns are lower for farmers who are unwilling to pay a randomly allocated

price. The technology in this study is an improved wheat seed that is introduced in a context where

farmers make simultaneous decisions on which crop (or crop combination) to grow and the type of seed

variety to adopt. The new seed is expected to be profitable for farmers with a comparative advantage

in growing wheat, since it is proven to be resistant to major crop diseases and can result in relatively

higher yield compared to existing wheat varieties. However, farmers’ actual returns to adopting the

new seed depend not only on factors known to the farmer before planting but also on determinants of

returns that farmers might not take into account (e.g., soil characteristics) as well as stochastic shocks.

Hence, prices are expected to have a selection effect only if the determinants of returns that are known

to the farmer ex-ante represent a large share of the variability of returns.

To test for this selection effect, we apply a two-stage experimental design that is executed in

one agricultural season before planting starts. In the first stage, we randomly allocate villages to

different subsidy levels, ranging from full subsidy to zero subsidy. A random sample of farmers in each

village are offered to buy the seed at the village-level subsidy rate. In the second stage, we randomly

allocate a subset of non-purchasing farmers from the first stage to receive the seed for free. We will

estimate treatment outcomes from two rounds of follow-up surveys at the end of two consecutive wheat

harvesting seasons.

The two-stage experiment allows us to estimate two parameters of interest. First, stage-one ran-

1Gollin et al. (2021) define the Green Revolution as the introduction of improved seed varieties as a result of ad-

vancements in modern crop-breeding techniques.
2Learning externalities from agricultural technology adoption have been documented in the literature (Conley and

Udry (2010); Foster and Rosenzweig (1995); Munshi (2004)). Credit constraints can be particularly problematic for

farmers who are short of liquidity right before planting, the time for making agricultural investment decisions (Field

et al. (2013); Fink et al. (2020); Karlan and Mullainathan (2010)). This is in addition to the lack of complete insurance

markets, which could hinder farmers from making optimal investments (Cole et al. (2014); Emerick et al. (2016); Karlan

et al. (2014)). Imperfect information could also result in low adoption due to underestimation of the expected returns

from a new agricultural technology (Carter et al. (2021)).
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domization gives the treatment effect over the whole population. Second, stage-two randomization

gives the treatment effect among the farmers who decide not to buy the seed at the offer price. From

these two parameters, we compute the treatment effect for the sample of buyers in stage one. Our

two-stage experimental design thus allows us to compare the actual returns between farmers that are

willing to pay for seeds and those that are not – at different subsidy levels.

Knowing whether selection into adoption is based on actual returns (vs. perceived returns or other

factors) has important implications for subsidy policy. For example, subsidies may be inefficient if the

farmers who choose not to buy the seed are those with relatively lower returns. On the other hand,

ability to pay may be less than willingness to pay, causing self-selection to be less effective. Alterna-

tively, learning over time could cause realized returns to differ from perceptions of expected returns

pre-adoption. Thus, evaluating the allocative efficiency of agricultural subsidies requires analyzing how

actual returns vary by purchasing decisions at different prices.

Besides, we will apply machine learning techniques to analyze heterogeneity in returns conditional

on farmers’ baseline characteristics. By training an algorithm on the sub-sample of villages that

receive a 100% subsidy in stage one, we will predict conditional average treatment effects (CATE)

for the entire population. We will use the predicted CATE to test for treatment effect heterogeneity

using the procedure in Chernozhukov et al. (2018). We expect treatment effects to be heterogeneous

across farmers for several reasons. The opportunity cost of a farmer adopting a new wheat seed include

not only growing a different seed variety, but also growing other crops, or taking up seasonal or non-

agricultural activities. Farmers access to and returns from different outside options would depend

on their characteristics. CATE estimates will tell us whether observable characteristics can predict

heterogeneity in farmers’ returns. Importantly, we will examine whether farmers’ purchasing decisions

are correlated with the same characteristics that can predict their actual returns. That is, we will

test whether farmers with higher CATE are more likely to adopt the improved seed at higher prices

(i.e., lower subsidy rates). A test for positive selection using predicted CATE would reinforce our

analysis using actual returns from the two-stage experiment. Predicted CATE resembles observable

information available for farmers when estimating expected returns pre-adoption.

Subsidizing agricultural technology might have indirect effects. Two channels for spillovers are

particularly important in our context: informal reallocation of the subsidized seeds and information

diffusion. Treated farmers can transfer seeds to untreated farmers either before planting, or after

harvesting by sharing part of their harvest with fellow farmers as seeds to be stored and planted in

the next agricultural season. This informal reallocation might improve the allocative efficiency of

untargeted subsidies, particularly if the subsidized seeds are reallocated to farmers with relatively high

returns. Similarly, information could diffuse to neighbors of treated farmers by raising awareness of

the existence of an improved seed variety or by providing signals on the expected returns to adoption.

Thus, an analysis of the full impact of a subsidy will be incomplete if we neglected the potential

for these spillovers. In our study, we will estimate spillover effects by comparing the outcomes for a

random sample of untreated farmers in treatment villages to that of farmers in control villages. We

will make this comparison across the different subsidy levels., using the subsidy as instrument for take

up to examine whether higher take up induces greater spillover effects.

Our paper contributes to the literature on how prices allocate goods with potential externalities.

Several studies have focused on subsidies for preventative health products and have shown mixed

results. Evidence in support of a full subsidy were found in contexts where private gains are much

lower than social benefits (Kremer and Miguel (2007)) or where price elasticity of demand is very high

even at low prices (Cohen and Dupas (2010)). In contrast, other studies have shown that prices have

a selective ability such that buyers with higher willingness-to-pay (WTP) are more likely to use the

product (Ashraf et al. (2010)) and that the marginal benefits are increasing in the buyer’s WTP (Berry

et al. (2020)). We contribute to this literature by looking at the selective ability of prices in a context
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where the new technology is an agricultural input with potentially heterogeneous returns – an area

where subsidies are widespread, but little is known about their allocative efficiency.

Self-selection as measured by willingness-to-pay (WTP) or willingness-to-accept (WTA) has also

been analyzed in the context of agricultural investments. Farmers were found to self-select into loan

take-up based on their returns to capital (Beaman et al. (2020)). Similarly, the benefits of a new

agricultural technology such as laser land leveling were found to be increasing with farmers’ WTP

(Lybbert et al. (2017)). On the supply side, WTA as measured by reverse auctions has proven to be an

effective mechanism for targeting conservation investments such as land-use subsidies and ecosystem

service contracts (Jack (2013); Jack et al. (2009)). Our experiment uses a two-stage experimental

design similar to that of Beaman et al. (2020) to explore whether lowering agricultural subsidies leads

to efficient sorting.

Furthermore, our study contributes to the literature on adoption of agricultural technologies in de-

veloping countries. Several explanations for low adoption have been offered in the literature, including

informational constraints (Ashraf et al. (2009); Carter et al. (2021); Hanna et al. (2014)), behavioral

constraints (Duflo et al. (2011)), and heterogeneity in transaction costs (Suri (2011)). The paper that

is closest to ours is that of Suri (2011), which uses panel data to show that heterogeneity in transporta-

tion costs affects farmers’ comparative advantage in adopting fertilizers, implying that unadoption can

be explained by low comparative advantage. We provide an experimental test of whether high prices

act as a barrier preventing adoption by high-return farmers, or whether high prices allocate technology

to farmers that will benefit from the technology the most.

Evidence on the impact of agricultural input subsidies from randomized controlled trials (RCT)

are quite rare. A recent study by Carter et al. (2021) used an RCT for evaluating a one-off input

subsidy package targeting “progressive” maize farmers in Mozambique. They find that the subsidy

package increased agricultural technology adoption, improved maize yields, and had positive spillover

effects on untreated “progressive” farmers in their sample frame. These findings are in line with the

results from a similar RCT evaluating a targeted intervention package known as the Wheat Initiative

in Ethiopia (Abate et al. (2018)). Giné and Ribeiro (2019) focus on equity-efficiency tradeoff in the

targeting of subsidized fertilizers in Tanzania. They find that the significant impact of the subsidy on

farmers’ productivity disappears after accounting for ex-ante differences between targeted farmers and

control farmers. We add to this literature by evaluating the allocative efficiency of an input subsidy

on a general population of farmers, while taking into consideration potential spillover effects.

2 Research Design

2.1 Study Context

Our experiment takes place in Bangladesh, the fifth largest wheat importer in the world. The country’s

annual wheat imports are in the range of six million tons (USDA (2021)). Recent growth in Bangladesh

wheat imports reflects an increase in demand, due to increases in domestic demand as well as increases

in wheat-based exports, accompanied with a reduction in wheat production.3 Over the past few years,

Bangladesh has faced a drop in wheat area due to a number of factors including the emergence of a

devastating crop disease referred to as wheat blast.

The wheat blast is a fungal seed disease that first emerged in Brazil in the 1980s, and has spread to

several countries including Bangladesh and Zambia through international grain trade. In Bangladesh,

the wheat blast first appeared in the 2015-2016 winter season and has spread rapidly across districts

3Wheat exports are prohibited in Bangladesh per the government’s export policy.

4



(Figure 1). Reported blast-related losses reached 51% of total field output CIMMYT (2019)). The fact

that wheat blast can spread through wind-blown spores makes it highly contagious. Once the blast

attacks a plant, it can deform the grain in less than a week from the first symptoms. Early attempts to

fight wheat blast with fungicides were not successful since fungicides provide only partial defense and

are not cost-effective for smallholder farmers. A short-term policy response by Bangladesh Ministry

of Agriculture was to discourage farmers from cultivating wheat in blast-prone districts to limit blast

spread.4 As a result, wheat area in the affected districts has dropped sharply (Figure 2).

As part of the Bangladesh government’s support for the production of improved seed varieties,

the Bangladesh Agricultural Research Institute (BARI) collaborated with the International Maize and

Wheat Improvement Center (CIMMYT) to produce a blast-resistant wheat seed called BARI Gom 33.

BARI Gom 33 is proven to be resistant to wheat blast based on field trials in Bangladesh and Bolivia,

and greenhouse tests by the US Department of Agriculture (CIMMYT (2021)). Even in the absence

of a blast outbreak, BARI Gom 33 is also resistant to other major diseases, such as leaf blight and leaf

rust, and is expected to result in 5-8% higher yield relative to other varieties (Mottaleb et al. (2019)).

In addition, the new seed is fortified with zinc, an important micronutrient given the high levels of

zinc deficiency in Bangladesh (Akhtar (2013)). BARI Gom 33 was first released in the fall of 2017.

Nevertheless, the seed is still at early stages of dissemination. A short market survey that was carried

out at the sub-districts in our sample showed that merely 8% of the retailers are selling BARI Gom

33 seeds.5

Although Bari Gom 33 is expected to have positive impacts on wheat productivity, not all farmers

have the same comparative advantage in growing wheat. Alternative crops that farmers could grow

during winter season (the dry season in Bangladesh) include Boro rice, maize, onion, mustard, lentil,

etc. Figure B.2 in the Appendix shows the share of different dry-season crops in our sample at

baseline for each sub-district. A number of factors could affect the degree of substitution between

these alternative crops. Limited access to irrigation could prevent farmers from growing irrigation-

intensive crops such as rice or sugar cane. Credit or liquidity constraints can limit farmers’ ability

to grow cash crops due to their high seed costs. Also, information constraints could result in limited

knowledge about farm management techniques for different crops. The drop in total wheat area shown

in Figure 2 suggests that farmers are self-selecting whether to continue growing wheat on a specific

plot or to switch to other crops or other income generating activities.

Subsidization of improved seeds represents an interesting setting for studying allocative efficiency.

Expected returns from the improved wheat variety depend on a number of attributes such as plot

characteristics, access to capital, and farmer’s skills. A profit maximizing farmer would base their

adoption decision on their evaluation of the expected returns from adopting the improved seed relative

to an idiosyncratic set of outside options (e.g., growing a replacement crop, fallowing or renting out the

plot, or taking up a seasonal or non-agricultural activity). This relative profitability is what determines

a farmer’s comparative advantage in growing the new seed. Prices (or price subsidies) are said to be

allocatively efficient if farmers self-select into adoption at the given price based on their comparative

advantage. This study aims to examine the allocative efficiency of price subsidies in the context of an

improved wheat seed variety in Bangladesh.

4A similar policy was followed by West Bengal government in India to avoid the spread of the wheat blast across

borders. In 2017, wheat cultivation in West Bengal was banned within 5 kilometers of Bangladesh border (CIMMYT

(2021)).
5Baseline data shows that only 1% of sampled farmers who grew wheat at baseline reported using BARI Gom 33

seeds. This is expected given the limited supply of the new seed variety in our study area.
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2.2 Experimental Design

The field experiment is implemented in seven districts in Bangladesh with different degrees of exposure

to wheat blast.6 The total sample size is 5,500 farmers from 220 villages. Villages were randomly

selected from twelve upazilas (sub-districts), while targeting regions that commonly grow wheat. We

first did a village census at the beginning of September 2021. The village census covered around twenty

thousand farmers from the 220 villages. This census data was used to randomly select 25 farmers per

village.

We use a two-stage experimental design similar to Beaman et al. (2020). In the first stage, villages

are split into three sub-samples of control, high subsidy, and medium-low subsidy villages. Treatment

randomization is stratified by: (a) sub-districts and (b) village-level intensity of wheat cultivation.7 As

shown in Figure 3, farmers in the control villages receive no intervention. In the high subsidy villages,

sampled farmers were offered a standard seed package with either a full subsidy or a 50% subsidy.8

Subsidy rates were randomly allocated at the village level, and were carefully chosen to reflect a full

range of prices for estimating the demand curve.9 In the medium-low subsidy villages, sampled farmers

were offered to buy the seed package at the village-level price. Village-level subsidies ranged from 25%

to 40% in the medium-subsidy villages, and from 0% to 20% in the low-subsidy village. Demand by

each farmer was elicited independently in a take-it-or-leave-it design at stage one.

In the second stage, medium-low subsidy villages were randomized into stage-two treatment and

stage-two control. High-subsidy villages are excluded from stage-two randomization due to high take

up at stage one.10 The implementation of stage two took place a few days after the completion of

stage one in the stage-two treatment villages. Farmers in stage-two treatment villages who initially

choose not to buy the seed package at stage one received the seeds for free in the second stage. Stage-

two control villages, on the other hand, did not receive any further intervention at the second stage.

Table 2 shows the number of villages at each subsidy level for stage-two treatment and stage-two

control groups.

We took several safeguards to make sure that farmers are blind of stage-two treatment during the

implementation of stage one. First, enumerators did not know about stage-two treatment until stage

one was completed at the upazila (sub-district) level. Second, stage two took place after all villages

within the upazila have completed stage one. This approach avoids any contamination in stage-one

results that is due to farmers’ knowledge of their stage-two treatment status. The distance between

villages in our sample that belong to different upazilas is large enough to make us confident that the

information on stage-two treatment did not simply spread from one upazila to another.

In order to ensure fairness in the implementation of the two-stage experiment, the message com-

municated with farmers at stage two is that a surplus in the seeds used for this research study will be

freely distributed to a sub-sample of farmers based on a lottery. In the two-stage-experiment villages

6The seven districts are: Faridpur (Dhaka Division); Choudanga, Jashore, and Jhenaidah (Khulna Division); Naogaon,

Pabna, and Rajshahi (Rajshahi Division).
7Intensity of wheat cultivation was calculated using the village census data on the last year the farmer cultivated

wheat. We classified villages into high and low wheat intensity based on whether more than 50% of the farmers in the

village reported cultivating wheat at least once over the past four years. Appendix Figure B.1 shows the intensity of

wheat cultivation across all villages in our sample.
8Standard seed packages weighted 15 kg each. The size of the seed package was determined based on findings from

the pilot survey that the average wheat plot size is 0.30 acres, which requires around 15 kg of wheat seeds. Each sampled

farmer was offered only one seed package at the offer price.
9The market price of the standard seed package is 600 BDT (40 BDT for 15 kgs). For reference, the average daily

wage of farmers in the study area is about 500 BDT. We deliberately choose not to offer a price subsidy of more than

50% because the pilot results showed very inelastic demand at higher subsidy rates. Average take-up at subsidies of

more than 50% during the pilot was 93%.
10Figure 4 shows that seeds take up at a 50% subsidy rate (offer price = 20 BDT/kg) was around 90%. This is close

to the 100% take up in free-distribution villages.
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only, farmers who paid a positive price for the seed package in stage one got their money back in stage

two. The rationale for this repayment is that all treatment farmers in the same villages are expected to

receive an equal treatment. However, we choose not to introduce any repayments in stage-two control

villages.

We will use two rounds of follow-up surveys to estimate treatment effects as well as spillovers. The

follow-up surveys will take place at the end of harvesting for two consecutive wheat seasons. Although

we will not execute any intervention in the following wheat season, treatment effects may last or

even increase in succeeding seasons as a result of seed multiplication and potential learning effects.

The follow-up surveys will cover treatment and control farmers, in addition to a random sample of

900 untreated farmers in treatment villages (i.e., within treatment controls). This sample of within

treatment controls will be randomly selected from the village census data to sample 5 untreated farmers

in each of the 180 treatment villages. A comparison between the outcomes of untreated farmers in

treatment villages and that of farmers in control villages should indicate whether the subsidized seeds

had a significant spillover effect. A priori we would expect stronger spillovers in villages with higher

take up of the subsidized seed. However, since take-up decisions are endogenous, we will instrument

for take up using the randomly allocated subsidy levels.

2.3 Objectives and Hypotheses

Our main research question is whether subsidized prices lead to inefficient allocation of a new agri-

cultural technology – improved wheat seeds. One innovation of this study is that our two-stage

experimental design allows us to estimate actual returns of farmers who initially select out of buying

the improved seeds at different prices – including market price. If the higher prices lead to positive

selection, then we would expect farmers who choose not to buy at stage one to have lower returns than

the average farmer in the population. We should be able to test for positive selection by comparing

the average returns in the free-distribution villages (no selection) to the average returns of non-buyers

in stage-two treatment villages (free distribution conditional on non-purchasing at stage one). We can

make this comparison across different subsidy levels to test whether a higher subsidy triggers inefficient

sorting.

Since the subsidy might have opposing effects on different beneficiaries, we are interested in an-

alyzing average treatment effects as well as the heterogeneity in treatment effects. We will look at

the distributional effects of the subsidy using quantile and distribution regressions to examine whether

farmers at the higher or lower end of agricultural returns benefited more from the subsidized seeds. Be-

sides, we will use machine learning techniques to analyze conditional average treatment effect (CATE)

and group average treatment effects (GATES) based on a set of baseline covariates. The main ad-

vantage of relying on machine learning algorithms is the ability to identify the set of variables that

predict heterogeneity. We can then use these predictions in a classification analysis to contrast the

characteristics of the farmers who benefited the most versus those who benefited the least from the

subsidized seeds (i.e., compare the characteristics of the farmers with the highest versus those with

the lowest GATES).

We acknowledge that the subsidy may have substantial spillover effects. In the presence of ex-

ternalities the social benefits of the subsidy could exceed the private benefits to treated farmers in

our sample. Environmental externalities from the improved wheat seed include limiting the spread

of crop diseases across wheat plots. The size of this externality would depend on the ratio of the

farmers growing the improved seed, the likelihood of crop damage from the outbreak of crop diseases,

and the expected size of the damage absent of the improved seed. In addition, the potential for seed

re-allocation or multiplication by treated farmers, means that spillover effects may last or even surge

in succeeding seasons. Similarly, a learning externality that makes farmers update their expectations
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on the returns to adoption would depend on the distribution of the farmers’ prior expectations and the

signal they receive from adopting farmers. In this study, we will provide an empirical test of spillover

effects by comparing the outcomes of a random sample of untreated farmers in treatment villages (i.e.,

within treatment controls) to that of pure control farmers. There is also a potential for calibrating a

model to estimate the net social gains of the subsidy from a social planner’s perspective.

2.4 Specific Outcomes

We expect the introduction of a new wheat variety to have an impact on a number of outcomes.

Table 1 lists the primary and secondary outcomes and the variables used in estimating each of these

outcomes.

We note that farmers selection of the farm plot for growing the improved wheat seeds is endogenous.

That is why we collected baseline data on farmer’s ranking of their plots’ suitability for growing wheat.

Figure B.3 in the Appendix shows the distribution of the dry season crops grown at baseline for all

farmers’ plots versus the one plot that the farmer ranked as the ”top plot” in terms of suitability for

wheat cultivation. In addition, we also collected data on plot characteristics at baseline (e.g., plot area,

plot tenure, distance from farmer’s home, and cropping cycle over the past three seasons). We will use

this baseline data to predict the likelihood that the farmer will select a specific plot for growing the

improved seeds. We will follow the same plot selection criteria across treatment and control farmers.

3 Empirical Strategy

We will proceed with our empirical analysis as follows. First, we will estimate the average returns to

the improved seeds from stage-one treatment. Using an encouragement design, we will test whether

average treatment effects vary with the subsidy rate. Second, we will make use of the two-stage

experimental design to test for positive selection. That is, we will test whether farmers with lower

(higher) actual returns are more likely to select out of (into) buying the seeds at stage one. Third, we

will use quantile regressions to analyze the effects of the subsidy along the distribution of agricultural

returns. Fourth, we will apply machine learning techniques to estimate conditional average treatment

effects (CATE) and test for treatment heterogeneity. We will also use the machine learning analysis

to examine whether farmers with higher CATE are more likely to select into buying the seeds. Thus,

the CATE analysis will reinforce the two-stage experiment analysis by testing for positive selection

using a different approach. We will extend the machine learning analysis to estimate group average

treatment effects (GATES) in order to identify the characteristics of the farmers that are likely to

benefit from the subsidy the most. Finally, we will provide empirical estimates for the spillover effects

by comparing the outcomes of a random sample of untreated farmers in treatment villages to that of

farmers in control villages.

3.1 Intent-To-Treat Effects of the New Technology

3.1.1 Encouragement Design

We will first use the random assignment of prices in an encouragement design. That is, we use an

instrumental variable approach such that the random subsidy is used as an instrument for adoption.

For this analysis, we limit our sample to the pure control, high-subsidy, and the stage-two control

villages in the medium- and low-subsidy arm. We will exclude stage-two treatment villages from this

analysis to avoid potential biases from the intervention in stage two. We chose to retain a pure control
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group in this encouragement design to increase power. Pre-intervention, we cannot be certain of the

demand elasticity. If demand is inelastic, a first-stage regression with only the treatment villages will

be weak and the encouragement design will lack power. In this case, the comparison between pure

control villages and all treatment (excluding stage-two treatment) villages would still allow for an

estimation of average treatment effect.

The reduced-form regression is:

Yivs = β1Subsidy
High
vs + β2Subsidy

Medium
vs + β3Subsidy

Low
vs + δXivs + αs + ϵivs (1)

where Yivs represents the outcome of interest (see Section 2.4 for a complete list of outcomes) for

farmer i in village v and strata s. SubsidyHigh
vs , SubsidyMedium

vs , and SubsidyLow
vs represent villages

receiving high, medium, and low subsidy levels, respectively. Table 2 shows the number of villages and

the subsidy rates in each of these three groups. Xivs is a vector of baseline characteristics, including

baseline value of the outcome variable. αs represents strata fixed effects and ϵivs is a random error

term.11 Standard errors will be clustered at the village level in all regressions. The β coefficients

represent the difference in outcomes across the different price levels, and the omitted category is the

pure control villages.

This specification allows us to estimate the average returns to the new seed variety. We will begin

by testing the null hypothesis of no treatment effect; that is, Ho : β1 = β2 = β3 = 0. The reduced-form

regression also allows as to test whether the average returns vary by subsidy level, which is important

for our research question on the allocative efficiency of prices. If the average returns are increasing

in uptake regardless of self-selection, then we would expect β1 > β2 and β2 > β3, particularly if the

first-stage regression shows significantly higher takeup at the higher subsidy levels. We can explicitly

test for these hypotheses using the regression specification in Equation 1.

Our choice of the control variables to include in the vector Xivs will follow the “post-double-

selection” method proposed by Belloni et al. (2014). First, using a large list of potential predictors,

we will estimate separate LASSO regressions to select the best predictors for each of our outcome

variables as well as the treatment dummy.12 Then, the list of controls that will be included in our

specification will include both the best predictors for the outcome variable of interest and the best

predictors for the treatment dummy. We will force the baseline values of the outcome variable as well

as the strata fixed effects to be included as a control in each regression.

The specification in Equation 1 can be extended to include stage-two treatment villages. Although,

the free distribution of seeds (and repayment of seed prices) at stage two could justify including stage-

two treatment villages under the group of high subsidy villages, one limitation to this approach is that

the repayment to initial buyers in stage-two treatment villages might introduce a re-budgeting effect

(i.e., farmers who are re-paid funds initially budgeted for seeds could spend that money on buying

more inputs). For this reason, we prefer to add stage-two treatment villages as a separate group as

follows:

Yivs = β1Subsidy
High
vs + β2StageTwo

Control
vs + β3StageTwo

Treat
vs + δXivs + αs + ϵivs (2)

where SubsidyHigh
vs represents the villages that receive the seeds for free or at a relatively high subsidy

of 50% in stage one. StageTwoControl
vs is essentially the same as pooling the stage-two control villages

in SubsidyMedium
vs , and SubsidyLow

vs villages in Equation 1 since stage two randomization was among

11As explained in Section 2.2, we stratify treatment by upazila and village-level wheat cultivation intensity, where

wheat intensity is measured by an indicator of whether more than 50% of the farmers cultivated wheat at least once

over the past four years. We end up with 18 strata for the 12 upazilas in our sample. This is because three of the 12

upazilas did not have enough variation in the indicator for wheat intensity and had to be merged with other upazilas.

Appendix Figure B.1 shows the density of the number of wheat farmers within the villages in the sample.
12See Appendix Table B.1 for a full list of potential predictors that we will include in the double LASSO regression.
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the medium and low subsidy levels only. We can then test for β1 = β3 to examine whether the free

distribution of seeds in stage two, which followed an incentivized demand elicitation in stage one, had a

substantially different treatment effects relative to an unconditional distribution at a highly subsidized

rate.13 A test for β2 = β3 can reveal whether the difference in outcomes for stage-two treatment and

stage-two control villages is statistically significant. This later comparison will shed the light on the

difference in ITT between villages that received the same set of randomly allocated prices at stage-one

(i.e., controlling for a pure price effect), whereas take-up in stage-two treatment villages is pushed to

nearly 100% by the exogenous shock of stage two treatment.14

3.1.2 First Stage for the Encouragement Design

Since the encouragement design uses randomly allocated subsidy rates as an instrument for adoption,

we will verify the validity of this instrument by estimating the sensitivity of demand to the different

subsidy rates (i.e., the first stage specification). The exclusion restriction is assumed to hold from the

random allocation of treatment.

The first-stage regression in the encouragement design is as follows:

Demandvs = θ1Subsidy
High
vs + θ2Subsidy

Medium
vs + αs + εivs (3)

where Demandvs is a farm-level measure of uptake at stage-one of the experiment, and rest of the

variables are defined as in Equation 1. The omitted category is the villages that received a low subsidy

rate. Since this is a first stage for the reduced form regression presented in Equation 1, we will use

the same sample and drop the stage-two treatment villages from this regression. However, we can

also estimate demand from all the treatment villages as a robustness check. Demand estimates are

based on the results from stage-one treatment, which should be the same for all the treatment villages

regardless of their stage-two treatment status.

As shown on the study timeline, the implementation of the experiment took place in November

2021. The authors could not stay blinded of the seeds demand data for two reasons. First, the data

on seeds demand from stage one is an essential input for the implementation of stage two. Second,

the number of non-buyers in stage-two treatment villages is needed for the updated power calculations

presented in Section 4.2.

Table 3 shows the results from estimating Equation 3 for the entire sample, as well as the sub-

sample of villages that did not receive further treatment at stage two.15 As shown on Table 3, average

demand is very low at the low subsidy rates (0-20%). Out of 25 treated farmers, on average merely

one farmer takes up the seeds at the low subsidy rate. The medium subsidy rates (25-40%) result in

an increase in demand of 28 percentage points. With the high subsidy (50-100%), take-up goes up by

89 percentage points. Figure 4 shows the results at each price level for the entire sample.

3.2 Is Self-Selection Based on Actual Returns?

The two-stage experimental design allows us to answer the question of whether farmers facing positive

prices self-select into buying the seeds based on their actual returns. We focus on stage-two of the

13As a robustness check we can disaggregate the group of high subsidy villages into two sub-groups of free-distribution

and 50% subsidy villages.
14Merely 11 farmers out of 1,400 farmers refused to take the seed for free during stage-two treatment.
15During implementation, four villages where excluded from the random sample of stage-two treatment. For three

villages, the reason for exclusion was 100% take-up of the seeds at stage one. For the fourth village, the reason for

exclusion is that the farmers refused to cooperate with enumerators during the seed sales intervention at stage one.
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experiment and define stage-two treatment farmers as those who received the seed for free in stage

two after deciding not to purchase the seeds in stage one. Similarly, stage-two control farmers are the

non-buyers from stage one who did not receive any further intervention at stage two. By comparing

the average returns among stage-two treatment farmers to the average returns among farmers in the

free-distribution villages, we can test whether there was positive selection at stage one. The specific

regression specification is:

Yivs = γ1Freevs + γ2StageOneNonPurchase
ivs ∗ StageTwoTreat

vs

+γ3StageOneNonPurchase
ivs ∗ StageTwoControl

vs + αs + ϵivs
(4)

For this specification we will use data from the pure control villages (omitted category), stage-one

free-distribution villages (Freevs), non-buyers in stage-two treatment villages (StageOneNonPurchase
ivs

∗StageTwoTreat
vs ), and non-buyers in stage-two control villages (StageOneNonPurchase

ivs ∗ StageTwoControl
vs ).

The terms αs and ϵivs represent strata fixed effects and a random error term, respectively. To correct

for nonrandom sampling of non-buyers, we can include probability weights in the specification above.

The probability weight for a stage-one non-buyer is equal to (# of sampled farmers in the village)/(#

of non-buyers in that specific village at stage one). For farmers in the free-distribution and control

villages the probability weight is equal to one. These probability weights will ensure that stage-two

treatment and control villages with different proportions of non-purchasing farmers at stage one are

equally represented.

The parameter γ1 gives the average treatment effect across the entire population relative to the

pure control group (the two sub-samples highlighted by the red rectangle on Figure 3). The difference

between γ2 and γ3 shows the treatment effect amongst the self-selected sample of non-buyers (the two

sub-samples highlighted by the green rectangle on Figure 3). Thus, a test for γ1 = γ2 − γ3 should

indicate whether the self-selected farmers obtained higher or lower returns. It is noteworthy that

treatment farmers in stage-two treatment villages and treatment farmers in the free-distribution villages

both received the seeds for free. This alleviates any concerns that the difference in outcomes could be

driven by some behavioral implications of free distribution, since these implications would apply to

both groups.16

The analysis in Equation 4 can be extended in several ways. First, we have pooled all the medium-

and low-subsidy villages together in Equation 4 to gain power. However, we can also separate them

by a subsidy rate threshold of 25% to estimate the extent to which higher prices lead to more efficient

sorting at the first stage. Moreover, we can control for the date of the free seed distribution at stage

one (in free-distribution villages) and stage two (in stage-two treatment villages) to account for any

changes in outcomes that are merely due to the timing of the seed delivery. The extended specification

is:

Yivs = γ1Freevs + γ2StageTwo
Treat
vs ∗ SubsidyMedium

vs + γ3StageTwo
Control
vs ∗ SubsidyMedium

vs

+γ4StageTwo
Treat
vs ∗ SubsidyLow

vs + γ5StageTwo
Control
vs ∗ SubsidyLow

vs + αs + ϵivs
(5)

where, for simplicity of exposition, we use StageTwoTreat
vs and StageTwoControl

vs to refer to non-buyers

in stage-two treatment and control villages, respectively. SubsidyMedium
vs , and SubsidyLow

vs are indica-

tors for whether the village received a medium or a low subsidy rate at stage one. Medium subsidy

16Two potential biases that might result from free distribution. The first is the perception of freely distributed goods

to be of low quality. This false signal hardly applies to our context since farmers in Bangladesh are acquainted with ad

hoc free distribution of certified seeds by the Department of Agricultural Extension. A second source of bias is wastage

of freely distributed seeds. For example, farmers might exert less effort in planting free seeds. This concern should not

affect the interpretation of our results. Our test for positive selection essentially compares the outcomes for farmers who

received the seeds for free at stage-one to that of farmers who received the seeds for free conditional on non-purchasing

at stage-one.
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rates are in the range of 25-40% and low subsidy rates are in the of 0-20%. We excluded the 50%

subsidy villages from the two-stage experiment due to the very high take-up in these villages at stage

one.17 The term αt represents time fixed effects that accounts for the day of the free seeds delivery.

The rest of the variables are as defined before. If positive selection is stronger at higher prices (i.e.,

lower subsidies), then we would expect to find γ2 − γ3 > γ4 − γ5.

3.3 Distributional Effects

As explained in Section 2.1, the choice set of crops to grow during dry season may vary across farmers

due to infrastructural or capital constraints. Baseline data on profits and revenues, summarized in

Appendix Table B.3, shows substantial variation in the profitability of different crops. This implies that

the opportunity cost of growing an improved wheat seed may not the same across farmers at different

quantiles of the profit distribution. For this reason, we will re-run the analysis in Equation 1 and

Equation 4 using quantile regressions, particularly when profits or revenues are used as the outcome

variable.

Technically, a quantile regression estimates coefficients that minimize the median absolute deviation

at each quantile, q. For Equation 1, for example, β(q) coefficients will be estimated to minimize the

following:

MAD =
1

n

n∑
i=1

θq
∣∣Yivs − (β1(q)Subsidy

H
vs + β2(q)Subsidy

M
vs + β3(q)Subsidy

L
vs + δ(q)Xivs + αs)

∣∣ (6)

where θq is a function of asymmetric weights that takes the form:

θq =

{
q if ϵivs > 0

(1− q) if ϵivs ≤ 0

ϵivs represents the random error term as before. Similar steps can be applied in estimating the quantile

regression coefficients for Equation 3.

An alternative approach for analyzing distributional effects is to use distribution regression as

discussed in Chernozhukov et al. (2013). This involves estimating the same regression specifications in

Equation 1 and Equation 4, while the dependent variable becomes the probability that the outcome

variable is greater than a threshold (i.e., P (Yivs > y)). This threshold, y, would move to cover all

points in the support of the outcome variable Y . That is, the distribution regression for Equation 1

becomes:

F (y) = β1(y)Subsidy
H
vs + β2(y)Subsidy

M
vs + β3(y)Subsidy

L
vs + δ(y)Xivs + αs + ϵivs ∀ y ∈ Y (7)

such that the slope coefficients β(y) are allowed to vary with the threshold y. Distribution regressions

would be preferred over quantile regressions if the distribution of the outcome variable Y does not

have a smooth density.

3.4 Is There Heterogeneity in Returns Based on Observable Characteris-

tics?

In Section 3.2, we presented a test for positive selection based on actual returns. However, one

might argue that farmers make their adoption decisions based on expected returns, which could be

17See footnote 9 for details on the choice of offer prices.
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different from realized returns due to uncertainty in agricultural production. In this section, we

present an alternative approach to analyze self-selection. We will apply machine learning algorithms

to predict conditional average treatment effects (CATE), conditional on baseline covariates. Then, we

will examine whether farmers’ adoption decisions are correlated with their CATE.

One algorithm that can be used for this analysis is the causal random forests approach in Wager

and Athey (2018). The advantages of causal forests include allowing for a large set of predictors and

accounting for potential non-linearities in the relationship between treatment effect and predictors.

Causal forests build on Athey and Imbens (2016) approach in using causal trees to estimate average

treatment effects within subspaces referred to as terminal leaves. The criteria for splitting the data

into terminal leaves are based on maximizing heterogeneity in treatment effects across leaves while

minimizing the variance in estimates within each leaf. CATE is estimated as the difference between

outcomes for treatment and control observations within each leaf. The causal forest algorithm of Wager

and Athey (2018) improves predictive power by applying a random forest approach to causal trees. A

further improvement over Wager and Athey (2018) method is the generalized causal forests introduced

by Athey et al. (2019). Generalized causal forests use a set of kernel-based weights to estimate CATE,

instead of letting each tree estimate its own treatment effect. Thus, our preferred method will be the

generalized causal forests. Alternative algorithms, such as those presented in Knaus et al. (2021), can

also be applied.

We will use the free-distribution and pure control villages as the training sample for the machine

learning algorithm to predict CATE for the entire sample based on baseline characteristics. We are

primarily interested in examining whether there is a positive correlation between predicted CATE and

seeds’ demand, and whether this correlation is higher or lower at higher subsidy rates.

Using the predicted CATE, we can formally test for treatment heterogeneity using the approach

proposed by Chernozhukov et al. (2018) for estimating the best linear predictor (BLP). Following the

notation of Chernozhukov et al. (2018), we will estimate the following weighted linear projection:

Y = α′X1 + β1(D − p(Z)) + β2(D − p(Z))(S − ES) + ε (8)

where Z is a vector of baseline covariates, X1 is a vector of (optional) controls such that X1 := X1(Z),

D is an indicator for treatment, p(Z) is a probability of random treatment assignment that depends on

a sub-vector of stratifying variables Z1 in Z, and S := S(Z) is the predicted CATE. The main identifica-

tion assumption for Equation 8 is E[w(Z)εX] = 0, where w(Z) = {p(Z)(1− p(Z)}−1, X := (X1, X2),

X1 := X1(Z), and X2 := (D, (D − p(Z))S(Z)). β1 captures the average treatment effect (ATE), while

β2 is the heterogeneity loading parameter. Thus, a rejection of the hypothesis H0 : β2 = 0 implies that

there is heterogeneity in treatment and the machine learning predictor S(Z) is able to capture this

heterogeneity.

In addition, we can also split the data into groups based on the predicted CATE to analyze group

average treatment effects (GATES). Formally, the parameter:

E[s0(Z) | Gk]

is constructed such that the data is split into Gk groups to explain as much variation in the predicted

CATE, s0(Z), as possible. This way a test for:

E[s0(Z) | G1] = ... = E[s0(Z) | Gk]

provides an alternative way to test for heterogeneous treatment effects.

If the results from the BLP and GATES analyses showed substantial heterogeneity, we can further

extend this exercise to examine the characteristics of the farmers with the highest and the lowest
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predicted GATES. This is essentially the classification analysis (CLAN) approach put forth by Cher-

nozhukov et al. (2018).

Going back to the question of whether farmers’ adoption decisions are correlated with their CATE,

we can test for this formally using the specification:

Purchaseivs = θ1Subsidyvs + θ2s0(Z)ivs + θ3Subsidyvs ∗ s0(Z)ivs + αs + εivs (9)

where Purchaseivs represents an individual farmer’s decision to buy the seed at stage one, Subsidyvs
is the randomly allocated subsidy rate at the village level, and s0(Z)ivs is the predicted CATE. The

coefficient θ2 should indicate whether farmers’ self-selection into purchasing the seed is associated with

CATE. That is, whether farmers’ observable characteristics that predict returns could also predict

demand. Besides, θ3 should indicate whether the association between predicted returns and demand

is stronger at higher or lower subsidy rates. We can also modify this specification to account for

nonlinearities in demand by using dummy variables for different subsidy levels.

3.5 Does the Subsidy Have Positive Spillover Effects?

An analysis of the efficiency gains or losses from a subsidy would be incomplete if we ignored spillover

effects on untreated farmers. In our study context, there is a potential for three spillover channels.

First, the subsidized technology is an improved seed variety that is expected to have a positive envi-

ronmental externality by limiting the spread of a contagious crop disease. Second, the subsidized seeds

can easily be reallocated or multiplied by treated farmers and shared with other farmers. Third, there

is a potential for social learning through information diffusion or direct observations by neighbors of

treated farmers. We do not aim to disentangle the effect of each spillover channel separately. How-

ever, we will provide empirical test for spillover effects using a random sample of untreated farmers in

treatment villages. Starting with a basic regression, we will run the following specification to test for

any spillover effects:

Yivs = ϕ1Treatmentvs ∗ Tivs + ϕ2Treatmentvs + δXivs + αs + ϵivs (10)

where Yivs represents the outcome of interest for farmer i in village v and strata s. The primary

outcomes for the analysis of spillover effects are whether the farmer grew wheat; whether the farmer

adopted the improved wheat variety; and whether the farmer has discussed this improved seed with

other farmers.18 Treatmentvs is a dummy variable for treatment villages, while control villages are the

omitted category. Tiv is an indicator for a randomly selected treatment farmer in a treatment village.

Xivs is a vector of time-invariant controls. The set of control variables available for this regression

is quite limited since we have not collected baseline data for the within treatment control farmers.

A potential control variable for this specification is the distance between the control and treatment

farmers’ plots or the ratio of treatment farmers within, say, a 500 meter radius of the control farmer.

Testing for ϕ2 = 0 should indicate if there is a spillover effects across all treatment villages.

We can extend this regression specification to test for differential spillover effects in two ways. First,

the specification below extends the analysis in Equation 1 using the subsidy rate as an instrument for

take up to test for whether spillover effects are increasing in take up.

18We note that we might not be able to use plot-level outcomes in our analysis of spillover effects since we do not

have baseline data for the sub-sample of within-treatment control farmers. The baseline data included farmers’ ranking

of their plots suitability for growing wheat. We can try to get around the endogeneity of the farmer’s plot choice by

using plot-level characteristics to predict which plot is most likely to be selected by the farmer for growing the improved

seeds. Alternatively, we can stick to farm-level outcomes. However, we would expect the impact on farm-level profits to

be weaker than the impact on plot-level profits due to the limited amount of seeds offered to each treatment farmer.
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Yivs = β1Subsidy
High
vs ∗ Tivs + β2Subsidy

Medium
vs ∗ Tivs + β3Subsidy

Low
vs ∗ Tivs

+β4Subsidy
High
vs + β5Subsidy

Medium
vs + β6Subsidy

Low
vs + δXivs + αs + ϵivs

(11)

The encouragement design allows us to test whether spillovers vary by subsidy level. That is, we can

test whether β4 > β5 > β6. We can also examine whether the intent-to-treat (ITT) effect is significantly

different from the spillover effect by testing for Ho : β1 = β4; Ho : β2 = β5; and Ho : β3 = β6.

Second, we can extend the regression specification in Equation 2 to test for difference in spillover

effects between stage-two treatment and stage-two control villages as follows:

Yivs = β1Subsidy
High
vs ∗ Tivs + β2StageTwo

Control
vs ∗ Tivs + β3StageTwo

Treat
vs ∗ Tivs

+β4Subsidy
High
vs + β5StageTwo

Control
vs + β6StageTwo

Treat
vs + δXivs + αs + ϵivs

(12)

Given the difference in the intervention received by stage-two treatment and stage-two control

villages, we would expect the spillover effects in these villages to differ as well. For example, the

reallocation channel might be stronger in stage-two treatment villages, since a portion of the treated

farmers received free seeds after deliberately choosing not to buy the seeds at stage one. Re-allocation

could take place among treated farmers as well as between treatment and control farmers in treatment

villages. As before, Tivs is an indicator for a randomly selected treatment farmer, regardless of the

farmer’s seed purchasing decision at stage one. A test for β4 = β6 should indicate if there is a difference

in spillover effects across villages with similar take-up rates but different interventions. On the other

hand, a test for β5 = β6 will should indicate if there is a difference in spillover effects across villages

that received the same offer prices at stage one, while at stage two only stage-two treatment villages

were shocked by free distribution of seeds.

3.6 Multiple Hypotheses Testing

As mentioned in Section 2.4, our primary outcomes are centered around three main variables; namely,

farm-level wheat area, plot-level profits, and plot-level revenues. However, our secondary outcomes

include groups of multiple outcomes such as impact on input use for a number of inputs. For these

outcomes, we will report adjusted p-values that correct for multiple inference following the free step-

down procedure of Westfall and Young (1993). Specifically, we will control for the Family-Wise Error

Rate by applying the free step-down resampling using 10,000 or more bootstraps, as explained in

Anderson (2008), for each family of outcomes.

4 Data

4.1 Data Collection and Processes

The key data source is primary survey data collected from the following questionnaires:

• Village listing survey (September 2021): covers all farmers in the 220 villages in the sample.

This survey includes farmer’s contact information, and the last year the farmer cultivated wheat,

if applicable.

• Market survey (September 2021): covers a random sample of inputs market in each of the

upazilas in the sample. This survey includes type of seed varieties sold in the market, average

price of wheat seeds, and start and end time for selling wheat seeds (in weeks).
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• Baseline survey (October-November 2021): covers sampled farmers in the 220 villages. This

survey includes farmer’s demographic characteristics, household asset ownership, and baseline

values for all outcome variables with reference to the last year’s cropping cycle. In addition, the

baseline survey had modules on farmer’s time-preferences, risk aversion, and preferences towards

wheat cultivation. Appendix XX provides a brief description of the baseline survey modules.

• Seed distribution survey (November 2021): was collected during stage one and stage two

of the seed distribution. In stage one, the seed distribution survey includes farmer’s buying/

take-up decision, and the main reasons for buying or refusing to buy the seed. In stage two, the

seed distribution survey includes the farmer’s take-up decision, and the farmer’s intended use of

the free seed package.

• Midline survey (May-June 2022 after harvesting ends): will include updated farmer’s contact

information, which seed varieties were grown on which plots (including Bari Gom 33 ), and all

of the outcome variables.

• Endline survey (May-June 2023 after harvesting of the following season): will be similar to

the midline survey.

4.2 Balance Check and Power Analysis

We check for balance across treatment arms for both stage-one and stage-two randomization using

baseline data. We also use the baseline data to re-evaluate our power calculations after estimating

intera-clusteral correlations (ICC) for the primary outcomes at baseline.

Table 4 shows the balance tests for each treatment arm.19 Balance at stage one of the experiment

is checked by comparing the means of key parameters across control, high-subsidy and medium-low-

subsidy villages. Similarly, balance at stage two is checked by comparing sample means for the sub-

samples of stage-two control and stage-two treatment villages. The sample is fairly balanced across

treatment arms with very few exceptions. For example, farmers in the pure control villages are slightly

older than farmers in other treatment arms. For those farmers who had any amount of outstanding

debt at baseline, the average amount of money owed is higher for farmers in the high-subsidy villages.

Also, farmers in stage-two treatment villages are more likely to have grown wheat on any plot over the

past three years. We can control for these three parameters in our regression specifications.

Table 5 presents the power analysis for the regression specifications in Equation 1 and Equation 4.

Using baseline data, we estimate the ICC for the primary outcomes and simulate power calculations

under different values for the correlation coefficient between the outcome variable and a set of control

variables including baseline values of the outcome and strata fixed effects. We show the results under

the assumption that this correlation coefficient, r, is 0.25, 0.5, or 0.75. We believe this is a reasonable

range, which corresponds to an R-squared of 0.05, 0.25, or 0.56, respectively. The baseline data shows

that regressing the baseline value of each of outcome variable on strata fixed effects alone results in an

R-squared in the range of 0.05 to 0.28. We present the minimum detectable effect (MDE) for different

values of r with one round of follow-up data as well as a panel of two rounds of follow up.

For Equation 1, we estimate MDE for the three primary outcomes, namely farm-level wheat area,

plot-level profits, and plot-level revenues. Given that high-subsidy villages have, expectedly, the highest

take up rate, we focus our power calculations on the regression coefficient β1, which corresponds to

high-subsidy villages. The power analysis shows that, with two rounds of follow up, we are powered

to detect a moderate increase in profits ranging from 0.10 to 0.15 standard deviations, depending on

19Table B.2 in the Appendix shows summary statistics for the entire sample.
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the value of r. However, due to a high ICC at baseline, we are only powered to detect an increase in

wheat area or revenues that is greater than 0.21 or 0.18 standard deviations, respectively.

For Equation 4, we are concerned with comparing the returns of farmers who selected out of buying

the seeds at stage one to the returns of the average population of farmers. This corresponds to a test

for γ1 = γ2 − γ3, following the notation in Equation 4. The primary outcome for this comparison is

plot-level profits. MDE in this case is sensitive to the value of r and whether the comparison is done

with cross-sectional data of one follow up versus a panel of two rounds of follow up. With two rounds

of follow up, the MDE is between 0.17 and 0.25 standard deviations, depending on the value of the

correlation between the outcome variable and the set of controls.
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Figures and Tables

Figure 1: Wheat blast vulnerability by district during 2016-2019
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Figure 2: Changes in wheat area in blast-affected districts (2013-2020)

Figure 3: Experimental design

This figure illustrates the two-stage experimental design. The red and green rectangles highlight the comparison between

the free-distribution and control villages at stage one versus the free-distribution and control villages at stage two. This

comparison represents our primary test for positive selection by farmers as explained in Section 3.2
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Figure 4: Seeds demand at stage-one
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Table 1: Primary and secondary outcomes

Primary Outcomes

Farm-level wheat area
An indicator of whether the farmer has grown wheat

on any plot during the winter season.

Total area allocated to wheat planting by the farmer

during the winter season.

Plot-level profits

Total farm revenue less total input costs.

Total revenues are calculated as the total output

multiplied by the output price for each crop.

Total costs include: land rental expenses, seed ex-

penses, chemical input costs (e.g., fertilizers, pesti-

cides, etc.), irrigation costs, hired labor expenses,

and family labor opportunity costs (imputed from

village-level average wage and following Agness et al.

(2022) rule of thumb of valuing family labor at 60%

of the market wage).

Profit as an outcome variable can be presented in

terms of “total profits” or “profit per acre” or “log

profit per acre”. In all cases, outliers will be trimmed

at the top and bottom 1%.

Plot-level revenue Similar to profit, the revenue variable can be pre-

sented in terms of “total revenues” or “revenues per

acre” or “log revenues per acre”. Outliers will be

trimmed at the top and bottom 1%.

Secondary Outcomes

Plot-level input use Fertilizers in kilograms per acre, pesticides in kilo-

grams per acre, herbicide in kilograms per acre, hired

labor hours by activity (planting, weeding, harvest-

ing), family labor hours by activity, irrigation time.

Cropping pattern Mix of crops cultivated during Rabi/ Boro and the

following season, measured by dummy variables for

the primary crops grown during Aman season, Rabi/

Boro season, and an optional third season.

Seasonal or non-farm work

during wheat season

An indicator for whether the farmer took-up seasonal

or non-farm work during Rabi season.

A measure of household income from non-farm ac-

tivities during Rabi season.
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Table 2: Sample size at each subsidy rate

Subsidy Rate
Number of Villages Number of Villages

in Stage-Two Control in Stage-Two Treatment

Low subsidy (0-20%) 35 30

Medium subsidy (25-40%) 25 30

High subsidy (50-100%) 60 0

Table 3: Stage-one demand

(1) (2)

All villages Excluding stage-two treatment villages

High Subsidy [50-100%] 0.89∗∗∗ 0.89∗∗∗

(0.03) (0.03)

Medium Subsidy [25-40%] 0.28∗∗∗ 0.28∗∗∗

(0.05) (0.07)

Strata FE Yes Yes

F-statistic 526.19 470.42

R-squared 0.792 0.825

Low-Subsidy Villages’ Mean 0.06 0.04

Number of farmers per village 25 25

Number of villages 180 123

Dependent variable is the share of treated farmers taking up the seed package at the offer price.

Standard errors clustered at the village level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Balance check

Variable

Stage-one Randomization Stage-two Randomization

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Control
High

subsidy

Med-

low

subsidy

p-val

(1)-(2)

p-val

(2)-(3)

p-val

(1)-(3)

Stage-

two

control

Stage-

two

treat-

ment

p-val

(7) - (8)

Farmer’s age 46.51 45.27 44.22 0.03 0.21 0.00 43.96 44.53 0.48

Farmer’s years of schooling 4.81 4.77 4.78 0.81 0.98 0.95 4.75 4.82 0.41

Household size 4.67 4.63 4.65 0.98 0.67 0.71 4.58 4.74 0.12

Access to non-farm income (0/1) 0.32 0.29 0.28 0.56 0.41 0.25 0.28 0.29 0.98

Access to credit from banks or

NGOs (0/1)
0.41 0.42 0.43 0.85 0.34 0.38 0.44 0.41 0.64

Total amount of outstanding

loans
54,378.61 58,035.62 48,469.47 0.68 0.07 0.15 47,831.96 49,358.56 0.76

Size of agricultural land owned

(decimals)
95.48 88.31 88.13 0.30 0.50 0.19 87.32 89.20 1.00

Total value of livestock owned

(’000)
119.58 118.85 114.98 0.87 0.78 0.70 113.31 117.02 0.64

Area of land cultivated last dry

season (decimals)
159.27 156.63 147.58 0.56 0.33 0.16 146.80 148.69 0.50

Farmer grew wheat in the past 3

years
0.56 0.50 0.57 0.45 0.68 0.69 0.54 0.61 0.01

Wheat area to total farm area in

2020-21 winter season
0.18 0.17 0.19 0.86 0.60 0.92 0.20 0.19 0.85

Farmer received extension in the

past 12 months
0.39 0.40 0.39 0.61 0.89 0.75 0.34 0.45 0.24

Primary plot is owned by the

farmer (0/1)
0.67 0.64 0.64 0.55 0.25 0.21 0.62 0.66 0.80

Primary plot area (decimals) 33.45 31.84 31.96 0.32 0.89 0.31 31.33 32.71 0.09

No. of times primary plot is irri-

gated in dry season
8.77 10.68 9.70 0.31 0.66 0.06 9.78 9.61 0.34

Plot-level revenues (BDT/acre) 62,836.63 68,211.92 68,341.63 0.11 0.40 0.24 67,784.81 68,868.91 0.50

Plot-level profits (BDT/acre) 26,738.48 29,489.65 26,131.89 0.36 0.20 0.85 27,319.00 24,717.88 0.20

Sample size 1,000 1,500 3,000 1,600 1,400

Columns (1)-(3) and (7)-(8) show sample means of the listed covariates for the each arm in stages one and two of the experiment, respectively. Columns (4)-(6) and

column (9) are estimated by regressing the listed covariates on a dummy variable for the corresponding comparison. For example, column (4) shows the p-values

from regressing each covariate on an indicator for a high-subsidy treatment versus a control village. All regressions use strata fixed effects and cluster standard errors

at the village level.

26



Table 5: Minimum detectable effects for the primary outcomes

Outcome variable
MDE for one round of follow-up MDE for two rounds of follow-up

r2 = 0.05 r2 = 0.25 r2 = 0.56 r2 = 0.05 r2 = 0.25 r2 = 0.56

A. Impact on high-subsidy villages: β1

Farm-level wheat area 0.31 0.28 0.21 0.30 0.27 0.21

Plot-level profits 0.17 0.16 0.11 0.15 0.14 0.10

Plot-level revenues 0.27 0.24 0.18 0.26 0.23 0.18

B. Evidence for positive selection: (γ1 > γ2 − γ3)

Plot-level profits 0.30 0.27 0.21 0.25 0.22 0.17

MDEs are in standard deviation terms. alpha = 0.05, power ≥ 0.8. Intera-clusteral correlation (ICC) is estimated

using baseline data as 0.39, 0.07, and 0.28 for farm-level wheat area, plot-level profits, and plot-level revenues, respec-

tively. The correlation coefficient, r, represents the correlation between the outcome variable and baseline values of

the outcome or other predictive covariates.
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A Survey Modules

Table A.1: Baseline Survey Modules

Module Brief description

Consent Informed consent form

A. General household character-

istics

Farmer’s contact information, household demographics,

non-farm income, total farm size

B.1. Farm overview
Total number of plots cultivated by the farmer.

For the three main plots (including main wheat plots): plot

area, distance from home, primary crops cultivated in each

season (usually Aman and Boro seasons, or Aman and Rabi

seasons), planting and harvesting month for each season,

output price and quantity for each season

B.2. Ranking of plots Ranking of plots suitability for growing wheat, ranking of

plots suitability for growing boro rice

C. Plot details Plot tenure, main crops cultivated during Rabi or Boro

seasons, seed amount, seed variety (for wheat only), labor

hours by task for hired and family labor separately, total

expenditure on hired or contract labor by task, other input

(e.g., fertilizers, pesticides, herbicides) quantities

D. Farm-level expenditures Total expenditures on fertilizers, herbicides, seeds (by

crop), contract labor

E. Landholder questions

Extension: Year of last extension visit, main crops dis-

cussed in extension training

Wheat area: farm-level wheat area for the last three years

Abandoned crop: crop that the farmer no longer cultivates

(if any), year in which the farmer stopped cultivating that

crop, main reason(s) for not cultivating that crop any more

Crop diseases: farmer’s perception of the main crop disease,

likelihood of wheat blast (if blast is mentioned as a major

disease), possibility of protecting harvest from blast (if blast

is mentioned as a major disease)

F.1. Time preferences Elicitation of hypothetical discount rate

F.2. Risk and ambiguity aver-

sion (qualitative)

5-point Likert scale evaluation for normative statements on

farmer’s attitude towards risk and uncertainty

F.3. Risk and ambiguity aver-

sion (quantitative)

Farmer’s choice between different seeds that have different

outputs depending on the amount of rain

G. Wheat seed preferences Elicitation of farmer’s willingness to pay for a blast-

resistant wheat seed

H. Crop insurance and access to

credit

Access to crop insurance or formal credit. Identifying any

potential credit constraints

I. Asset ownership Land assets, livestock, productive capital, and household

assets

Plot location GPS GPS location of the main (wheat) plot during dry season
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B Appendix Figures and Tables

Figure B.1: Village-level wheat intensity in the sample

Figure B.2: Crops cultivated during dry season by upazila
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Figure B.3: Crops cultivated on the plot during dry season
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Table B.1: List of potential controls

Household and farm characteristics

Demographics Farmer’s age, literacy, years of education, household size,

number or household members above the age of 16, number

of household members available for farm work

Non-farm income Indicator for any source of non-farm income, specific source

of non-farm income

Asset Ownership Agricultural landholdings, livestock ownership, ownership

of any irrigation equipment (shallow machine, power pump,

deep tube well, etc.), ownership of power tiller, ownership

of a fishpond, house size, ownership of means of transporta-

tion (bike, motorcycle, etc.)

Access to credit and insurance Access to any kind of crop insurance, access to formal credit

over the past 12 months, reason for not obtaining more

credit

Access to agricultural informa-

tion

Year of the last extension visit

Preferences towards wheat culti-

vation

Indicator for discussing “wheat” during the last exten-

sion visit, farm-level wheat area in 2021, farm-level wheat

area in 2020, farm-level wheat area in 2019, indicator for

whether the farmer has stopped wheat cultivation, reason

for abandoning wheat, farmer’s perceptions of the likeli-

hood of wheat blast, indicator for whether the farmer be-

lieves it is possible to protect a wheat farm from the blast,

hypothetical WTP for a blast-resistant wheat seed

Time preferences Estimated discount rate

Risk aversion (qualitative) Estimated risk aversion index based on 5-point likert scale

evaluation for normative statements on farmer’s attitude

towards risk and uncertainty

Farm and (main) plot

characteristics

Farm size (total cultivated area during 2020-21 winter sea-

son), plot area, plot tenure, walking distance to the plot

from home, number of primary crops grown on the plot

during the previous winter season, type of wheat seed used

during the previous winter season

Estimates for plot (or village) elevation from GPS data

Baseline values of outcome variables 20

Baseline profits Plot-level profits at baseline

Baseline revenues Farm-level and plot-level revenues at baseline

Baseline input use Input use on the main wheat plot at baseline

Baseline cropping pattern Mix of crops cultivated during the dry season at baseline

20See Table 1 for a full list of outcome variables.

32



Table B.2: Summary statistics from baseline data

Mean SD N

Farmer’s age (years) 44.92 12.68 5,500

Farmer’s years of formal schooling 4.78 4.12 5,500

Household size 4.65 1.74 5,500

Number of household members available for farm-work 1.64 1.56 5,500

Access to non-farm income (0/1) 0.29 0.45 5,500

Access to any kind of crop insurance (0/1) 0.01 0.11 5,500

Access to credit from banks or NGOs (0/1) 0.42 0.49 5,500

Farmer wanted to borrow more money at the usual rates (0/1) 0.27 0.45 2,397

Total amount of outstanding loans (BDT) 52,120.87 51,639.55 2,391

Size of agricultural land owned (in decimals) 89.51 101.64 5,446

Total value of livestock owned by the household (’000) 116.87 134.96 5,500

Household owns a power pump or deep tube well (0/1) 0.29 0.45 5,500

Household owns a threshing machine (0/1) 0.12 0.32 5,500

Household owns a power tiller (0/1) 0.07 0.26 5,500

Area of land cultivated during 2020-21 winter season (in decimals) 152.17 139.08 5,500

Farmer grew wheat on any plot in the past 3 years (0/1) 0.55 0.50 5,500

Farmer grew wheat on any plot in 2020-21 winter season (0/1) 0.36 0.48 5,500

Wheat area to total farm area in 2020-21 winter season 0.19 0.30 5,500

Hypothetical WTP for blast-resistant wheat seed (BDT/kg) 17.44 14.33 5,500

Farmer received extension visit over the past 12 months (0/1) 0.39 0.49 5,500

Wheat was one of the crops discussed during the last extension visit 0.22 0.41 4,848

Primary plot is owned by the farmer (0/1) 0.65 0.48 5,500

Primary plot area (in decimals) 32.20 22.05 5,500

Number of times the primary plot is irrigated during dry season 9.80 14.16 5,500

Plot-level revenues (BDT/acre) 67,303.64 57,403.56 5,260

Plot-level profits (BDT/acre) 27,157.78 82,184.35 5,260
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Table B.3: Summary statistics by main dry season crops

Mean/SD Median N

Wheat

Yield (kg/acre) 1,310.11 1,230.77 1,797

(363.76)

Revenues (BDT/acre) 32,441.28 31,250.00 1,787

(11,066.62)

Profits (BDT/acre) including family labor costs -6,788.68 -5,596.00 1,787

(20,558.40)

Profits (BDT/acre) excluding family labor costs 1,283.90 1,715.15 1,787

(15,917.92)

Boro Rice

Yield (kg/acre) 2,677.14 2,666.67 1,378

(466.28)

Revenues (BDT/acre) 67,972.95 67,941.18 1,372

(15,820.62)

Profits (BDT/acre) including family labor costs 23,986.84 25,060.27 1,372

(22,416.55)

Profits (BDT/acre) excluding family labor costs 31,990.09 32,810.79 1,372

(19,675.67)

Onion

Yield (kg/ acre) 6,565.94 6,400.00 526

(1,672.75)

Revenues (BDT/ acre) 186,908.76 184,615.39 516

(53,826.51)

Profits (BDT/acre) including family labor costs 71,379.54 76,068.46 516

(59,750.92)

Profits (BDT/acre) excluding family labor costs 103,100.27 109,414.52 516

(55,616.62)

Maize

Yield (kg/ acre) 4,790.07 4,800.00 447

(1,085.01)

Revenues (BDT/ acre) 83,166.46 84,848.48 443

(17,809.23)

Profits (BDT/acre) including family labor costs 34,672.82 35,403.02 443

(20,817.94)

Profits (BDT/acre) excluding family labor costs 41,558.88 43,404.65 443

(19,551.73)

Lentil

Yield (kg/ acre) 700.42 727.27 369

(177.53)

Revenues (BDT/ acre) 49,055.66 50,000.00 359

(13,794.27)

Profits (BDT/acre) including family labor costs 19,668.54 24,775.76 359

(18,244.39)

Profits (BDT/acre) excluding family labor costs 27,240.44 30,787.88 359

(15,405.14)
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