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Abstract

This experimental study investigates the causal effect of a teacher capacity building
program that promotes blended instruction, on student learning. It will be
implemented in government schools in Haryana, India, in collaboration with a
large, local NGO (“Avanti Fellows”). The program’s objective is to positively affect
the instruction of mathematics and science, in grades nine and ten. The study
hypothesizes that student learning improves if teachers are given resources and
training, to enrich their instruction with video-based learning materials. Secondly,
the study hypothesizes that the intervention’s cost-effectiveness outperforms that
of an alternative model of teacher capacity building, which does not rely on
infrastructure upgrades and uses printed workbooks only.
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1 Introduction

This experimental study investigates the causal effect of a teacher capacity building program
that promotes blended instruction, on student learning. It will be implemented in government
schools in Haryana, India, in collaboration with a large, local NGO (“Avanti Fellows”). The
program’s objective is to positively affect the instruction of mathematics and science, in
grades nine and ten. The study hypothesizes that student learning improves if teachers are
given resources and training, to enrich their instruction with video-based learning materials.
Secondly, the study hypothesizes that the intervention’s cost-effectiveness outperforms that
of an alternative model of teacher capacity building, which does not rely on infrastructure
upgrades and uses printed workbooks only.

This research thus seeks to contribute to three main areas. First, the study relates to
literature on innovative, “untraditional” teacher training approaches, which—among other
program components—stress continued interaction with trainees (Egert et al. 2018; Kraft et al.
2018). Secondly, this research relates to evaluations of education technology in less-developed
countries (more specifically, as a means to improve instructional quality through partially
scripted lessons) (Gove et al. 2017). Finally, this study also speaks to the question of how
promising educational interventions can be effectively administered at scale (Banerjee et al.
2017; Muralidharan and Niehaus 2017; Vivalt 2017).

The goal of this pre-analysis plan is to precisely pre-specify the study, its scope, and its
analysis. The document is structured as follows. I begin by describing the program and its
components. This is followed by a description of the sample of schools, their randomization
into three groups, and calculations of statistical power (i.e., the study’s ability to detect the
program’s effects on student learning outcomes). The next section details data sources and
strategies that will be used to measure the program’s main outcomes, its intermediary effects,
its implementation fidelity, and its costs. Subsequently, I present how the program’s causal
effects will be assessed econometrically. In doing so, I focus on the intervention’s primary
outcomes (i.e., effects on student learning); however, analyses of effects on student sub-groups
and on program mechanisms are also specified, as secondary work. The pre-analysis plan
concludes by presenting its reporting plan, and by providing additional psychometric details
in a short, technical Appendix.
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2 Experiment

2.1 Intervention

240 Government Senior Secondary Schools (GSSS) across 8 districts of Haryana will be equally
randomized across two treatment arms and the control group, with 80 schools assigned to
each group. The following provides a more detailed description of the intervention, for the
two treatment arms. This section also describes the comparison or “control” group, in which
schools continue their operations as usual.1

1. ICT Group: This group will receive the full intervention. This includes setting
up smart classrooms, provision of digital content to supplement teaching instruction,
printed workbooks for practice of students, and capacity building of mathematics
and science teachers responsible for teaching class ninth and tenth curriculum. Two
smart classrooms enabled with ICT (Information and Communications Technology)
infrastructure will be set up per school. Procurement, installation and maintenance of
projectors, computers and sound systems will be under the purview of HSSPP (Haryana
School Shiksha Pariyojna Parishad). Capacity building workshops for teachers will be
designed and implemented by Avanti Fellows.2 Practice workbooks designed by Avanti
will be printed and distributed by HSSPP across 160 schools in the two intervention
groups.

2. Workbook Group: This group’s program components are equivalent to those
administered in the previous group; however, the group does not receive those particular
program components related to ICT (i.e., ICT-related infrastructure upgrades or digital
content).

3. Control Group: This group continues with “business-as-usual”. The schools assigned
to the control group will neither receive facilities nor materials. Their teachers will also
not undergo the program’s teacher training activities.

Either of the two intervention groups allow for a comparison of the program with what
is currently considered “business-as-usual”, for Haryana government schools (by contrasting
groups 1 and 2 with group 3, above). In addition, the study will provide information on the
program’s cost-effectiveness through a comparison of the “full” (costlier and more difficult to

1Table 1 in Appendix B provides a detailed breakdown of responsibilities, for the two implementation
partners, along with the program’s components and intervention groups. To facilitate the program’s
replicability and scalability, the study will provide an even more detailed description of the program, following
Arancibia et al. (2016).

2The initial workshop will be for three days, followed by on-site training for ten days.
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implement) intervention with an alternative model that does not rely on ICT. To do so, the
study will compare the effects in groups 1 and 2, above. The following sections provide a more
detailed description of the randomization strategy, as well as the study’s analytic approach.

2.2 Sample, randomization, and power calculations

The study includes all eighth- and ninth-graders in 240 schools, in eight Haryana districts,
as selected by the Government and by Avanti Fellows (these students will graduate to grades
nine and ten, shortly after). The study will cover two cohorts of students – a first cohort that
starts (towards the end of) the school year 2018/19, and a second cohort that starts (towards
the end of) the school year 2019/20. In the first cohort, students in grade 8 will be followed
for two years. All remaining students will be followed for one year.3 In the two grades,
average enrollment is a combined 122 students, per school (51 in grade 8, 71 in grade 9), for
an expected total of 29,280 students in the first cohort, and an additional 12,240 students in
the following cohort.4

Schools are assigned with an equal split across the three groups (for a total of 80 schools per
group). To achieve similar control and treatment groups and to improve statistical power,
randomization is stratified. Within districts, schools are sorted into randomization strata of
three, grouping schools with similar performance on the Haryana Board Exams together.5 If
the number of schools for any district ranking is not divisible by three, I randomly assign the
remaining schools. In this case, I assign these remaining schools globally, i.e. across districts
(cf. Carril 2016).6 Finally, I repeat the above randomization strategy ten times, selecting
the randomization with the smallest t-statistic, from comparisons across the treatment and

3In the second cohort, students in grade 9 are those first-cohort students who graduated from grade 8 and
thereafter attend grade 9. At the time of pre-registration, due to funding constraints, there is still no clarity
as to whether students of the second cohort can be followed for two years.

4Information as per a feasibility audit conducted for the program, in 2018. In grades 9 and 10, the average
combined enrollment is 152 students, per school.

5To rank schools, I use the average school-level Board Exam score for 2018, overall (covering English,
Hindi, Mathematics, Sanskrit, Science, and Social Studies). More precisely, I calculate a school’s weighted
average, using information on the number of student in each of six performance ranges, on the test.

6As more than three schools need to be randomized across districts, I once more group schools with similar
Board Exam scores together.
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control groups (for a set of select covariates7 and the average school-level Board Exam score
for 2018) (cf. Bruhn and McKenzie 2009).8

Conservatively, the study will thus be powered to detect an intent-to-treat effect of 0.158
standard deviations (SD). This number should be considered an upper bound as it focuses
on a single cohort of students, only (students in grade 8, at baseline, to be followed over
two years). Figure 1 represents this calculation visually, plotting Minimal Detectable Effect
Sizes (MDEs) against the number of schools in the study.9 As shown in the figure, there
are substantial benefits from using 240 schools, as opposed to a smaller sample (such as 180
schools). To put the minimal detectable effect into perspective, in my work with Ganimian
and Muralidharan (2017) in Rajasthan, we find a 0.47 and 0.33 SD difference between sixth-
and seventh-graders, and seventh- and eighth-graders, respectively (in math). Among students
in the set of 59 pilot schools, in Rajasthan, I find a 0.26 SD difference between ninth- and
tenth-graders (in math).

3 Measurement and data

The following describes outcome variables and their measurement. Data integrity and data
security will be guaranteed through standard quality checks, including (out of sample)
piloting, (back-)translation of instruments between English and Hindi, spot-checks and
accompaniments, high-frequency checks, and the use of end-to-end encryption (for digital
data-collection) (cf. Glennerster 2017).

Student learning. The study’s main program outcome of interest is student learning, in math
and science. Students in grades nine and ten will be assessed at baseline (in December)
and approximately one year later, through an end-of-year test (in January).10 Assessments

7Using Lasso, I select a set of covariates from India’s District Information System for Education (DISE),
which are predictive of school-level average pass rates for standardized exams (in grades 7 and 8). This
procedure selects the following covariates: Number of students in grade 7 and 8; percentage female (students);
percentage minority (students); percentage “Other Backward Class” (students); number of teachers; percentage
female (teachers); percentage graduates (teachers); years in service (school); co-ed (school); school requires
minor repairs; wall missing or damaged; ratio computers/students.

8Comparisons across groups account for stratification fixed effects. I follow Athey and Imbens (2017) and
Banerjee et al. (2017), who suggest that the number of re-randomizations should be limited and pre-specified.
I am not aware of an optimal number, but consider 10 re-randomizations as conservative.

9I compute the MDE in standardized test scores as a function of the number of schools, for analyses at
a 5% significance level, with 80% power. Based on assessments conducted with 59 pilot schools in the same
state, in 2017/18, I assume that covariates will account for 36% of the endline variation. I also account for a
(worst case) scenario, in which attrition will be 35%. Based on the same set of assessments, in 59 pilot schools,
I assume an intra-school correlation of scores of 0.17 (after accounting for students’ baseline scores). Given
school-level assignment, I assume absence of spill-over effects.

10Students who take their baseline assessment in grade 9 will take two follow-up tests: one at the end of
grade 9, and another at the end of grade 10. Students who take their baseline assessment in grade 10 will only
take one follow-up test, at the end of grade 10.
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Figure 1: Power calculations
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Note: This figure plots Minimal Detectable Effect Sizes against the number of schools in the study. The
vertical lines indicate 180 and 240 schools, respectively. MDEs reflect main intent-to-treat effects. 1/3 of
schools in the ICT Group; 1/3 in the Workbook Group; 1/3 doing business-as-usual. Calculations assume
power=0.8, alpha=0.05, spill-over=0, attrition=0.35, R-squared=0.36, ICC=0.17, 51 8th-graders/school.
These assumptions reflect Ganimian et al. (2017), and additional pilot results from 59 schools, in Rajasthan.

will be administered as paper-based tests (one per grade and subject), under the same,
strict governmental oversight as other central exams (with additional monitoring from the
research team). Test items are tightly mapped to the official “CBSE/NCERT” school
curriculum, but also include items from up to two years below grade-level. Items have been
administered in similar contexts previously, in large-scale assessments. From these previous
administrations, item response theory (IRT)-based item characteristics are used to maximize
each assessments’ test information.11 Estimates of student ability will be calculated using
a standard, three-parameter logistic (3PL) IRT model, with a single guessing parameter
(Birnbaum 1968; Samejima 1973).12 In doing so, anchor items across grades and test-occasions
will allow for the (concurrent) linking of estimates onto one common, continuous ability scale
per subject (Kolen and Brennan 2004; Stocking and Lord 1983).

11See Jacob and Rothstein (2016) for an accessible introduction to item response theory, in the economics
literature.

12In case a 3PL model does not converge, a 2PL model will be used instead.
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Teaching behaviors and quality of instruction. The program’s effects on teaching behaviors and
on instructional quality will be assessed through two instruments: Classroom observations and
student reports. First, the program includes bi-weekly school visits (conducted by government
“block officers”) and monthly classroom observations (through Avanti Fellow’s field staff). All
visits and observations will be conducted in intervention and control schools. For this purpose,
the study developed an instrument to measure the program’s effect on the quality of instruction
a student receives.13 Secondly, during school visits, a subset of students will be surveyed on
common classroom behaviors. The study explicitly defines either of these data sources as a
measure of mechanisms, i.e. not as a main outcome.

Intervention monitoring. Sign-in sheets will be used to track teachers’ exposure to
capacity-building activities. Avanti Fellows will moreover provide data from its software
backend, to track teachers’ use of videos and digital learning materials. Monitoring data will
also be collected in the above-mentioned bi-weekly and monthly visits, through a structured
school questionnaire.

Cost data. Avanti Fellows will provide data on program implementation costs (planned and
actual).

4 Analytic strategy

4.1 Primary outcomes

The study’s main focus is the extent to which student learning improves, because of the
program. In summary, to investigate this question, I will compare students’ performance
across the three groups of schools, along with schools’ intended or “intent-to-treat” status.14

More technically, I will estimate the intent-to-treat effect (ITT) of the two different treatments
on endline learning outcomes, using the following specification:

Yirs2 = αs + φr + Yirs1 +
2∑

k=1

βksTki +Xirs1 + εirs2 (1)

13This work greatly benefited from conversations with experts on classroom observation measures (in
particular, Professors Heather Hill of Harvard and Edward Seidman of NYU). I thank the World Bank’s
SABER team for sharing its newly developed “TEACH” classroom observation instrument with me. In
summary, the study’s instrument measures six dimensions, as follows: monitoring of student learning; feedback;
maximization of learning time; density of the mathematics / science; clarity of content and lack of errors;
richness of the mathematics / science.

14Further below, I will describe additional analyses that relate program effects to actual, observed program
implementation.
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, where Yirst is the outcome of interest (standardized to µ = 0 and σ = 1, on the baseline
test), for student i, in randomization stratum r, and subject s, at period t (t = 1 denotes
baseline; t = 2 denotes endline). Tk is the dummy for treatment k. Xirs1 is a vector of student
covariates measured at baseline15; φr are randomization strata fixed effects and εirs2 captures
the idiosyncratic error term (expected to be correlated at the school-level (cf. Abadie et al.
2017)).

I will thus assess the following research hypotheses, by testing their corresponding null, H.

1. The two variants of the program affect student learning in subject s. H1: in Equation 1,
βks 6= 0

2. The two variants of the program affect student learning in subject s differently. H2: in
Equation 1, β1s 6= β2s

This study’s analyses will rely on Randomization Inference (RI) (cf. Young 2016). Athey
and Imbens (2017) discuss how pairwise randomization may complicate the econometric
analysis of randomized trials (e.g. for regression-based methods). Moreover, the authors
(ibid.) and Banerjee et al. (2017) discuss additional complications due to re-randomization,
if a given analytic strategy does not consider which feasible randomizations have been
ruled out. Therefore, I will prefer an RI-based analysis of research hypotheses, permuting
schools’ treatment status within the given strata, and mimicking the above-mentioned
(re-)randomization procedure 5,000 times (per specification).

4.2 Effects on subskills

To provide a more fine-grained understanding of program effects, I will repeat the above
analyses by subskill. For mathematics, items are categorized as measures of either one of the
following four abilities: Algebra; geometry; number system; and data/statistics. For science,
items are categorized as measures of either biology, chemistry, or physics. In summary, this
subskill analysis will establish the extent to which the program affected a student’s probability
of mastering each of these subskills.

In the case of subskills, because of the lower number of items per sub-skill, student performance
will not be scored with a continuous measure of ability. Instead, I will distinguish between
three categories of mastery, for each of the two subjects: students who have mastered
grade-level appropriate material; students who have only mastered material from one and two

15This vector will include a student’s gender, her age, and her grade-level, at baseline. In addition, I will
include village- and school-level covariates, from the 2011 census and from administrative data; in doing so, I
will follow Dhar et al. (2018) and select these additional controls using Lasso.
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years below their grade-level; and other students. I will determine students’ level of mastery
empirically, through a Cognitive Diagnostic Model (CDM).16 A short, technical appendix to
this pre-analysis plan provides additional details on this CDM.

4.3 Heterogeneous effects

The program may affect some student subgroups more strongly than others; in addition, it can
be expected that the program will increase its effectiveness after its initial inception phase.
I will investigate three types of such heterogeneity in program effects. To avoid specification
searching, I pre-specify these analyses for subgroups here, as follows.17

By initial ability level (at baseline). I will distinguish between three categories of mastery, for
each of the two subjects. To determine students’ level of mastery, I will employ a Cognitive
Diagnostic Model, as described above.

By grade level. I expect heterogeneous effects by students’ enrolled grade-level, at baseline
(grade 9, grade 10).

By cohort. I expect effects to be larger in the second cohort of the program, once program
implementation has stabilized.

Heterogeneous effects posit an interaction between the treatments’ indicator variables with
the respective baseline characteristic. For illustration, I provide the corresponding equation
for heterogeneous effects by grade-level, as follows:

Yirs2 = αs + φr + Yirs1 +
2∑

k=1

βksTki +
2∑

k=1

β2+ksTki ∗Girs1 +Xirs1 + εirs2 (2)

, where G represents a binary indicator of whether a student was enrolled in grade 10,
at baseline. More formally, the study thus hypothesizes that the program’s two variations
affect student learning in subject s differently depending on a student’s sub-category status,
at baseline. H3: in Equation 2, β2+ks = 0. In the given illustration, this coefficient will
indicate whether the program affects tenth-grade students more strongly (or not as much), in
comparison to ninth-grade students.

16To determine levels of mastery, I will thus not use arbitrary cut-offs, such as whether students answered
50 percent (or any other percentage) of items correctly.

17Specification searching or “p-hacking” refers to occasions in which “a researcher, consciously or not,
adjusts his model specifications or analysis sample in numerous ways until he finds a significant coefficient
on the explanatory variable(s) of interest.” (Tanner 2018, 1). My analyses will not consider any additional
heterogeneous effects, beyond the ones specified just below.
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4.4 Secondary outcomes: Analysis of mechanisms

What are the intermediary, secondary outcomes that drive the program’s effects on student
learning? To answer this question, I will turn to an analysis of mechanisms. I will approach
this issue in two steps. First, I will assess whether teaching behaviors and instructional
quality change because of the program. To this end, I will replace Yirs2 in Equation 1 with the
above-mentioned measures (a) of teaching behaviors and (b) of instructional quality. Second, I
will explore the association of each of the instructional measures with the continuous measures
of student ability, in math and science. Finally, following Romero et al. (2017), I will report on
the full mediating pathway, separating direct program effects on student learning from effects
that are channeled through changes in instructional behaviors and instructional quality.18

4.5 Additional analyses

I will moreover conduct the following analyses.

1. Assessment of internal validity and robustness of results, in particular:

(a) Analysis of sample balance on baseline observables, across study groups

(b) Analysis of (un-)systematic attrition, across study groups

(c) Robustness to handling of missing baseline information, by re-estimating
Equations 1 and 2 without baseline covariates (Yirs1 and Xirs1)

(d) Robustness to adjustments that account for multiple hypothesis testing, following
Young (2016)19

2. Instrumental Variable (IV) estimates of dose-response relationship (cf. Muralidharan
et al. 2016, section 4.5)

3. Comparison of either program variant’s cost-effectiveness (cf. Dhaliwal et al. 2014)

18Romero et al. (2017) employ a Lasso procedure to identify potential mediators (from a large number of
variables). I will follow the authors’ approach (ibid.) to identify mediating instructional behaviors; yet, the
Lasso procedure will be forced to include teachers’ use of ICT materials as a predictor. In turn, concerning
instructional quality, I pre-specify six dimensions that will be investigated as potential mediators (monitoring
of student learning; feedback; maximization of learning time; density of the mathematics / science; clarity of
content and lack of errors; richness of the mathematics / science). This approach to mediation analysis rests
on sequential ignorability – hence, I will interpret these results conservatively (see Romero et al. 2017).

19In the case of main program outcomes (i.e. continuous measures of student learning, in math and science),
I will not use these adjustments.
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5 Reporting

The study will produce two types of reports: (a) internal reports to Avanti and GoH on
student performance, for each round of assessments, and (b) reports on the academic findings
of the study.20

1. Internal reports on student performance: I will accompany each round of
assessments with a report on student performance. Aggregated to the school-, block-,
and district levels, these reports will present average scores (normalized), percent of
items answered correctly, and percentage of students having mastered a grade-level
understanding of either subject.

2. Academic reports: Academic reports will strictly focus on the program’s effects,
following this pre-analysis plan. Prior to January 1, 2022, academic working papers
and presentations will be shared with HSSPP and academia for discussion of interim
findings. After January 1, 2022, reports and materials will be published. GoH and
Avanti will be clearly acknowledged in any of these publications and materials.

20In addition, Avanti will provide half-yearly reports to the HSSPP.
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Appendix A Technical appendix

This brief technical appendix provides additional information on how students’ ability will be
categorized across three levels of mastery, using Cognitive Diagnosis Models (CDMs). CDMs
are multi-dimensional latent-trait models, which were “developed specifically for diagnosing
the presence or absence of multiple fine-grained skills or processes required for solving problems
on a test” (de la Torre 2009, 164). This study will largely rely on the generalized deterministic
inputs, noisy and gate (G-DINA) model for dichotomous items (de la Torre 2011). As
common for CDMs, the G-DINA model requires a theoretically-founded specification of which
attributes are expected to contribute to an examinee’s probability of answering a given item
j correctly. This so-called “Q-matrix” lists all items as rows, all attributes as columns, and
denotes qja = 1 if attribute a is reflected in item j (and qja = 0, otherwise). The study’s
student assessments are explicitly designed to provide this item-to-skill mapping.

In CDMs, the mastery profile of each learner is described by a latent vector of dichotomous
entries that each indicate whether an examinee has mastered any attribute; α∗

lj =

(αl1, · · · , αlk, · · · , αlK∗j
), where K∗

j denotes the number of attributes captured by item j.
Conditional on this latent vector α∗

lj, G-DINA models the probability of an examinee’s correct
answer for j, as a function of item parameters λj.

Following de la Torre (2011), we may express a respondent’s probability of solving an item as

P (Xj = 1|α∗lj) = λj0 +

K∗j∑
k=1

λjkαlk +

K∗j∑
k′=k+1

K∗j −1∑
k=1

λjkk′αlkαlk′ + · · ·+ λj12...K∗j

K∗j∏
k=1

αlk (3)

, where λj0 reflects the probability of a correct answer to item j for non-masters (the “guessing
parameter”), λjk is the main effect related to having mastered attribute k, λjkk′ captures the
interaction effect for attributes k and k′ , and λ12...K∗j is the interaction effect given mastery of
attributes 1 to K∗

J .

After an initial item screening, I will begin my analyses with a (saturated) G-DINA model,
using marginal maximum likelihood estimation. Recall that I intend to measure student
ability on two scales – one that reflects mastery at a student’s enrolled grade-level, and one
that reflects mastery at a grade-level below. Therefore, I perform this and any of the remaining
estimations in eight runs (one per ability level, grade-level, and subject combination), allowing
item parameters to vary. I then investigate whether model fit could be improved by using a
log-linear or logit link instead of the above-mentioned identity link. I subsequently validate
and refine the study’s Q-matrix, following Torre and Chiu (2016), and through a qualitative
review. Thereafter, following Ma et al. (2016), I investigate whether a more parsimonious,
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reduced model may be used without a significant loss in model data fit, for each of the test’s
items. Lastly, after this model-selection procedure, I estimate students’ mastery profiles.

14



Appendix B Supplementary tables and figures

Table 1: Program components, partner responsibilities, and intervention groups

Notes: ICT: Information and communication technology. GoH: Government of Haryana. DIET: District
Institute of Education and Training. HSSPP: Haryana School Shiksha Pariyojna Parishad. GSSS: Government
Senior Secondary School.
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