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Introduction
Nowadays, organizations and businesses adopt artificial intelligence (AI) systems in various different
application domains, such as product recommendations (Dias et al., 2008), breast cancer detection
(McKinney et al., 2020), predictive maintenance (Paolanti et al., 2018), or credit-risk assessment
(Khandani et al., 2010). The motivation for firms to adopt AI systems is straightforward: It fosters
value creation (Müller et al., 2018). Consider the example of an online retail-business using an
AI-based recommender system to personalize product offers according to consumers’ data. Assuming
the recommender system correctly predicts the consumers’ preferences, personalized product offers
should increase their relevance for the respective consumers and thus contribute to higher purchase
rates (Dias et al., 2008). In addition, contemporary AI systems are highly scalable (Korteling et al.,
2021). Expanding the application scale of AI systems is associated with disproportionately low costs,
and is far cheaper than human resources. AI systems do not only create business value for
organizations, but may also benefit consumers: For instance, AI-based chatbots increase customer
experiences (Blöcher and Alt, 2021) and recommender systems facilitate consumers’ search for
products (Pathak et al., 2010).

Such benefits can only materialize when consumers accept and use AI systems (Hu and Pu, 2009).
However, the deployment of AI systems is associated with various challenges, too often leading to
resistance and aversion to algorithms (Puntoni et al., 2021; Smith et al., 2022). One of these challenges
is the feeling of being misunderstood, when consumers question the accuracy and reliability of AI
systems (Puntoni et al., 2021). Prior research indicates that allowing users to modify AI models and
their outcomes is one effective means to reduce algorithm aversion (Dietvorst et al., 2018). In our
work, we investigate how organizations may encounter algorithm aversion by involving the user into
the prediction-making process. More precisely, we propose an approach where organizations allow
users to select which information they pass to the AI system. In an experimental setting, we investigate
the impact of this voluntary information disclosure on consumers’ attitudes towards and the actual
predictive performance of AI systems.

Most contemporary AI systems apply algorithms from the field of machine learning (ML) (Kühl et al.,
2020). In a nutshell, ML algorithms predict the value of an unknown outcome variable based on
previously learned patterns in historical data. This pattern recognition happens during the training
process: By providing a ML algorithm with historical data for which the outcome variable is known,
the algorithm learns the latent relationships between input variables (hereafter referred to as features)
and the outcome variable. Training observations in the form of feature-label pairs are crucial for the
performance of the ML model; sufficiently large and diverse training data is a prerequisite for accurate
prediction models (Ying, 2019).

Nowadays, consumers become increasingly aware of the value and risks associated with their personal
data and, thus, dislike being tracked for commercial purposes (Preibusch et al., 2013; Zimmer et al.,
2010). One remedy is to give consumers explicit control over their information disclosure, i.e.
consumers select which attributes they disclose to the AI system (Knijnenburg and Kobsa, 2013).
Information disclosure is a well-studied concept within information systems research. For instance,
existing works investigate the context dependency of information disclosure (John et al., 2011) and
how organizations may foster consumers’ tendency to disclose information voluntarily (Acquisti et al.,
2012). However, to the best of our knowledge, there is no work empirically investigating the effects of
voluntary information disclosure on consumers’ attitudes towards and the actual predictive



performance of AI systems. In our work, we employ an experimental approach to quantify the effect of
voluntary information disclosure on consumers’ stated attitudes and perceptions towards AI systems,
such as the emotional and cognitive trust or perceived accuracy. Furthermore, we investigate
behavioral consequences: Does voluntary information disclosure enhance consumers’ revealed AI
appreciation?

In a second stage, we also investigate whether consumers’ control over information disclosure may
even improve the prediction performance of an ML model. Two considerations underlie this
proposition: First, consumers’ active decision to conceal an attribute represents implicit information in
itself which a ML model could consider in the prediction process. Imagine a person intentionally
concealing (for any possible reason) information about her age; on the one hand, that piece of
information is lost, on the other hand, her concealment decision implies that this person feels
discomfort with revealing her age. Provided that the intentional information concealment is encoded in
the training data, the ML model can learn from it and, so we argue, improve in prediction accuracy.
Second, if an individual considers specific attributes of her to mislead the AI system, concealing that
information may improve the prediction performance as well. Imagine a 20 years old person searching
for music with a preference for jazz-bands from the 1960s: Revealing the age of that person may
mislead the AI towards incorrect predictions, as that consumer’s specific preference is (most likely)
atypical for her subpopulation.

Better understanding the effect of voluntary information disclosure is highly important for
organizations and policy makers. If this mechanism indeed bears the potential to mitigate AI aversion
and simultaneously improves prediction performance, organizations could consider this insight into the
design of their AI-systems. Policy makers, on the other hand, should be aware of such effects and
discuss means to protect consumers against involuntary disclosure of implicit information.

Experimental design

Overview

Studying the consequences of voluntary information disclosure for AI systems and consumers in a
realistic field setting is hardly feasible for several reasons: First, implementing the concept of
voluntary information disclosure without knowing the potential benefits and weaknesses of that
mechanism constitutes a severe business risk to companies; for instance, it is unclear whether
consumers rationally assess incentives to reveal or conceal features. Second, field experiments
inherently involve the problem of confounding variables. For instance, consumers’ perception of
voluntary information disclosure may be distorted by the image of a firm. Third, a firm's willingness to
adopt our mechanism may represent an endogenous variable itself: firms that face low acceptance rates
of their AI systems may be more inclined to adopt our mechanism than firms with high acceptance
rates. To overcome these problems, we developed an experimental setting in which participants may
control which variables are submitted to an AI system whose predictions potentially influence the
participants’ payoff. In this experimental setting, participants may choose one binary lottery (Fellner
and Maciejovsky, 2007) of a set of 200 binary lotteries which differ in terms of their risk level as well
as objective goodness of the potential payoffs. Participants may leverage a pre-trained AI system,
predicting the participants’ risk attitudes, for preselecting a lottery subset which is aligned with the
individual participants’ risk attitudes. Participants in the treatment group further have the opportunity
to select which attributes the AI system may process; in the following, we refer to this procedure as
decentralized feature selection.



The basic procedure of the experiment is the following: In stage 1, before informing the participants
about subsequent stages, we elicit attributes about participants via a questionnaire. These attributes
serve as input features for the AI-based risk attitude prediction. In stage 2, after the explanation of the
experiment, we present the participants the full list of the 200 possible binary lotteries with censored
payoffs. The lotteries differ in terms of their risk level as well as the goodness of the potential payoffs
(see subsection ‘Details on stage 1’ for more information). After the presentation of the full lottery list,
we introduce the AI system to the participants. The AI system is trained to predict participants’ risk
attitudes based on the information provided in the initial questionnaire. Using this prediction, the AI
system filters the five most suitable lotteries from the full list of 200 lotteries for each individual
participant. In stage 3, we perform the main treatment manipulation. We allow treatment participants
to perform decentralized feature selection. Participants in the baseline group do not get this
opportunity; in their cases, the AI system processes all information elicited in the initial questionnaire.
Following that, we ask all participants to state their willingness to pay (WTP) for leveraging the AI
system using the Becker-DeGroot-Marschak (BDM) method (Wertenbroch and Skiera, 2002)1. In
stage 4, participants make their lottery decision. Participants whose WTP was high enough for
receiving the AI support may inspect both the AI-based lottery preselection and the full list of 200
lotteries. Participants whose WTP did not reach the critical BDM-threshold do not receive the
AI-based preselection. In stage 5 we elicit the participants’ perception of the overall AI system, the
perception of the AI system’s prediction accuracy and the participants' revealed risk attitude.

In a follow-up analysis, we investigate whether the implicit information provided by the decentralized
feature selection contributes to higher prediction accuracy. To this end, we compare the prediction
performance of our initial ML model without this implicit information with a new ML model that is
enriched with this implicit information.

Details on stage 1

The purpose of this stage is the collection of participant data the ML model uses to predict individual
risk attitudes. In total, we elicit thirteen attributes, such as basic demographics, Likert-scale based
questions about the participants’ satisfaction with different aspects of life, and specific variables like
the frequency of drinking alcoholic drinks. The appendix provides a summary of our collected
attributes. Submitting the questionnaire happens before we explain the experiment to the participants.
This ensures that participants have no incentive to give false information and cannot game the
algorithm.

Details on stage 2

In this stage, we show participants the list of all 200 possible lotteries from which they can choose in
stage 4. To avoid a priming effect on the lottery decision in stage 4, we censored the payoffs of the
lotteries in the presentation stage. The lotteries differ considerably in terms of their risk level, being
characterized by the variance of the lottery: The lowest-risk lottery represents a secure payment of
10000 experimental currency units whereas the highest-risk lottery offers payment of either 20075 or
3500 currency units, with a probability of 50% each. Furthermore, the lotteries differ in terms of the
goodness of the potential payoffs. We differentiate two categories of lotteries: Dominant (Class A-)
lotteries and dominated (Class B-) lotteries. Class A-lotteries are superior to class B-lotteries as they

1 The work of Wertenbroch and Skiera (2002) provides a detailed explanation of the BDM mechanism.



offer higher potential payoffs for a given probability distribution. Hence, choosing a class-B lottery is
always a suboptimal decision, independent of the participants’ individual risk attitude. Having
presented the lotteries, we explain the AI system to the participants. The AI system acts as a decision
support system that proposes a preselection of five most suitable class A-lotteries from the full list of
lotteries to each participant.

We trained the ML model of our AI system based on research data of the Socio-Economic Panel
(SOEP). Our target variable is the participants’ own opinion of willingness to take risks.2 The risk
attitude is coded as an ordinal variable with eleven classes (class 0-10). For the training process of our
ML model, we created a dataset consisting of 24326 observations within the SOEP 2016 wave and 14
attributes, including the risk attitude target variable. We conducted a 0.8-0.2 train-test split, resulting in
a training set of 19460 observations and a test set of 4866 observations. Having compared the
prediction performance of numerous ML model configurations, we eventually ended up with an
extreme gradient boosting (XGB) model with a learning rate of 0.05, a maximum tree depth of 6, and
number of estimators of 7503. Applied on the test set, our model achieves a root mean squared error
(RMSE) of 2,38.

Details on stage 3

Stage 3 serves as our treatment manipulation. Our ML model predicts the risk attitudes of participants
based on thirteen attributes that they submit in the initial questionnaire. Whereas in the baseline
condition, participants have no opportunity to influence the ML model after the submission of the
questionnaire, the participants in the treatment condition may select which attributes they pass to the
ML model and which they hold back – a process which we call decentralized feature selection. We
operationalize decentralized feature selection by providing the participants a list with all attributes
including the values which the participants initially submitted. The participants may inspect each
attribute individually and decide whether they want to pass this piece of information to the ML model
as prediction input. Subsequently, we elicit data about the participants’ perception regarding the
contribution of each variable on the model outcome. In the introduction, we argued that one
mechanism, through which decentralized feature selection should affect the performance of the ML
model, is the retention of possibly misleading variables. Transferred to our use case, consider a 73
years old person who regards herself as being highly risk-taking. Applied to the society as a whole,
this person assumes a negative correlation between the age of people and their risk attitude. Thus,
according to her own mental model, this person should regard herself as an outlier of the
subpopulation of older people; in other words - according to her mental model, the age-attribute would
most likely mislead the ML model towards a wrong risk attitude prediction. To account for that
mechanism, we elicit the participants’ perception about the contribution of each feature on the
predicted risk attitude. Next, we elicit the participants’ WTP for leveraging the before explained AI
system using the BDM method. For the participants, the BDM mechanism is decisive whether the AI
system may be leveraged or not. Simultaneously, the stated WTP represents a proxy for their algorithm
appreciation: The more currency units participants are willing to sacrifice for the AI usage, the higher
the revealed algorithm appreciation.

Details on stage 4

3 For a detailed explanation of the XGB algorithm and its hyperparameters, we refer to Chen and Guestrin (2016).

2 We have chosen the variable bgp05 (How do you rate yourself personally? In general, are you someone who is ready to take
risks or do you try to avoid risks?) from the 2016 SOEP wave as target variable.



In this stage, the participants make their lottery decision. Depending on the outcome of the BDM
mechanism, some participants will get the opportunity to use the AI system as decision support. These
participants receive a list of those five class A-lotteries whose risk level is most aligned with the
participants’ predicted risk attitude. Still, if desired, participants may expand the full list of all 200
lotteries and make their selection out of this comprehensive list; therefore, the usage of the AI system
does not restrict the number of options. Participants who are not entitled to use the AI system do net
get the AI-based decision support; they have to comb through the full list of 200 lotteries.

Details on stage 5

In stage 5, we first elicit the participants' revealed risk attitude. To this end, we conduct a second,
considerably easier, lottery decision round. In this second round, we offer the participants eleven class
A-lotteries—one lottery representative for each risk level. By choosing one of these lotteries, participants
implicitly reveal their actual risk attitude. Next, we elicit the participants’ perception whether the ML
model is effective in predicting risk attitudes, the participants’ perceptions regarding the ML models’
prediction accuracy, and several supplementary measures, such as the emotional trust, the general
attitude towards AI, and the transparency.

Technical implementation of decentralized feature selection

We technically implemented the concept of decentralized feature selection in the following way: For
each of our thirteen attributes, we created a dummy variable that stores the participants’ disclosure
decision. By default, these dummy variables have the value 0; if the participants of the treatment group
decide to hold back an attribute, the respective value is replaced by the value -1 and the associated
dummy variable takes the value 1. As a result, the ML model of our follow-up analysis infers risk
attitude predictions from a total of twenty-six variables–the thirteen attributes from the questionnaire
plus the thirteen associated dummy variables, storing the information disclosure decisions of the
participants. The ML model of the follow-up study thus represents a modified version of our initial
ML model which predicts the participants’ risk attitude based on the thirteen questionnaire attributes
alone. The integration of the decentralized feature selection decisions into our initial model technically
requires that we train the initial model on both the thirteen questionnaire attributes and the thirteen
associated dummy variables; this ensures that the model learns from the beginning how to deal with
these special binary variables. However, since we do not have decentralized feature selection
information in our original SOEP training set, we decided to technically imitate decentralized feature
selection. We randomly replaced a small fraction of the training set values with the value -1 and turned
the values of the associated dummy variable to 1; this emulates participants randomly holding back a
small number of attributes. Since we replace the values randomly, we train our ML model on the
thirteen dummy variables without adding distorting information into the data.

Hypotheses

Behavioral hypotheses

The primary goal of our research is to investigate the effects of decentralized feature selection on (i)
participants’ stated attitudes towards and the revealed appreciation of AI systems, and (ii) the actual
prediction performance of the underlying ML models. Thus, we explore both the behavioral
consequences and the technical potential of decentralized feature selection. To this end, we collect



several types of data during the experiment. In the following, we formulate our hypotheses regarding
our collected data.

The main difference between the baseline group and the treatment is the decentralized feature
selection. The possibility to retain specific attributes should make the participants feel more
comfortable with the AI system (Knijnenburg and Kobsa, 2013), and allow participants to remove
potentially misleading information. As a consequence, we believe that participants in the treatment
group expect the ML model to have higher prediction accuracy and show higher appreciation to the AI
decision support compared to participants in the baseline group. In stage 3, we measure the
appreciation of the AI decision support via the WTP for AI usage. In stage 5, we measure the
participants’ perception of the ML model’s prediction accuracy. This leads us to formulate the
following hypothesis:

Hypothesis 1: Participants in the treatment group are willing to pay more for the usage of the AI
system than participants in the baseline group.

Hypothesis 2: Participants in the treatment group perceive the ML model to have a higher prediction
accuracy than participants in the baseline group.

Having conducted decentralized feature selection, we elicit the perception of the treatment participants
regarding the contribution of each variable on the ML models’ risk attitude prediction. We assume that
the disclosure choices during the decentralized feature selection are highly dependent on these
perceptions. Our hypothesis on this interdependence is:

Hypothesis 3: Participants likely retain attributes for which they expect a misleading contribution to
the ML model’s prediction.

Technical hypothesis

Apart from the participant perception measures, we are interested whether decentralized feature
selection leads to higher prediction performance of ML models. Therefore, we will compare the ML
model which incorporates the decentralized feature selection decisions, stored during the experiment,
with the original model (see section ‘Technical implementation of decentralized feature selection’). To
this end, we will retrain our ML model with the decentralized feature selection decisions and
technically assess the modified model in a simulation analysis. In that context, our hypothesis is:

Hypothesis 4: Considering participants’ decisions during decentralized feature selection in the
prediction process enhances the performance of ML models.

Analysis Plan

Primary outcome measures

Stage 3: Willingness to pay for usage of the AI system. The higher the WTP is, the higher the
participants’ appreciation of the AI system.

Follow-up analysis: Performance of the ML model incorporating decentralized feature selection
relative to the baseline ML model in terms of established performance metrics (RMSE, Accuracy,
ROC AUC, etc.)



Secondary outcome measures

Stage 5:

● Perceived contribution of variables on the risk attitude prediction: Does the participant expect
each variable to have a significant influence on the AI prediction? (negative contribution -
neutral - positive contribution)

● Cognitive trust in the AI system

● Emotional trust in the AI system

● Transparency: Does the participant understand how the AI system generates the predictions?

● Power: Does the participant feel empowered to steer the AI-based prediction?

● Privacy intrusion

● Perceived accuracy of the AI system: How high does the participant expect the accuracy of the
AI system ?

● Perceived Root-Mean-Squared-Error of the AI system

● Attitude towards AI (Sindermann et al., 2021)



Appendix

Appendix A

Variable name Meaning Data type

age Age of the participant Numeric

bgbilzeit Duration of education or training in years Numeric

sex Gender Binary

germborn Born in Germany? Binary

height Body height Numeric

bgp0112 Currently smoke? Binary

bgp05 Own opinion of willingness to take risks Numeric

bgp0111 Satisfaction with social life Numeric

bgp0610 Importance of religion Numeric

bgp0702 Frequency of bank account checks Numeric

bgp115 Frequency of drinking alcoholic drinks Numeric

labgro16_bin Current gross labor income in euro (month) Numeric

bgp0608 Importance to be socially and politically active Numeric
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