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Pre-Analysis Plan

1 Introduction

1.1 Research Questions

We plan to address the following research questions:

� How well do humans incorporate information that the AI provides? Do
they overweight or underweight their own signal relative to the AI's signal?

� How important is contextual information in evaluating relative perfor-
mance of humans, AI, and their combined use?

� How to optimally organize the collaboration between humans and AI?

� How does heterogeneity in radiologist skill and practice style a�ect their
performance?

2 Experimental Design

This experiment is a follow-on to the experiment described in AEA RCT Reg-
istry AEARCTR-0008799.

2.1 Overview of the Experiment

2.1.1 Patient Cases from Stanford Health

We use the same patient cases for this experiment as in the experiment described
in AEA RCT Registry AEARCTR-0008799, which come from Stanford Univer-
sity's health care system and results in a �nal set of 324 patient cases. Each
patient case consists of a frontal chest x-ray and the patient's clinical history.
The patient's clinical history contained vital information such as weight, blood
pressure, temperature, pulse and age, recent labs, and the referring physician's
indication.
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2.1.2 Treatment Arms

There are the following treatment arms in this study that will be cross-randomized.

� AI Treatment: Patient cases are presented alongside assistance of an AI
support tool or without it

� Clinical history: Patient cases are presented alongside the patient's clinical
history or without it

� Incentive randomization: Responses will be incentivized as described in
Section 2.1.8

An example patient case shown with and without the AI support tool and
clinical history is shown in Figure 3 and Figure 4.

2.1.3 AI Algorithm

The AI assistance is based on a convolutional neural-network computer-vision
algorithm for chest X-rays (Rajpurkar et al. 2017). The output of the algorithm
is calibrated to return the probability that each of fourteen pathologies were
present (including abnormality and support devices). This algorithm has been
shown to perform at or near expert human levels across �ve of these pathologies
that were selected for the CheXpert competition (Irvin et al. 2019).

2.1.4 Subject Recruitment

We will recruit radiologists from teleradiology �rms. We will aim for 250 sub-
jects. Each radiologist will participate only once, and we verify that there are
no repeat participants using browser �ngerprinting and by checking a cookie
left on the participant's browser.

2.1.5 Experimental Design

Subjects will be randomized into one of two groups. In the �rst group of ra-
diolgoists, each participant will read 15 di�erent cases under the four possible
AI / Clinical History treatment combinations and the order of AI and clinical
history treatments will be randomized. That is, subjects will read 15 di�erent
cases with only x-rays, with AI assistance, with clinical history, and with both
AI assistance and clinical history. The second group of radiologists will read
50 cases both with and without AI assistance. Of these 50 cases, half will be
read with clinical history and half will be read without clinical history. This
group will allow us to estimate the degree of automation bias or neglect with
more precision given that we will observe radiologist assessments both with and
without AI. The presence of incentives will be randomized across radiologists in
both groups. We will also include a small number of warmup reads to introduce
radiologists to the interface. These will be excluded from the analysis.
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2.1.6 Interface

All data is collected through the experimental interface that we developed. This
interface was developed using the o-tree framework (Chen, Schonger, and Wick-
ens 2016) and deployed on a Heroku server. We ask subjects to label up to 104
thoracic pathologies, which are structured in a hierarchy with four levels to min-
imize the burden on participants. Subjects are �rst asked the probability the
chest x-ray contains one of 9 top-level pathologies and we only ask subjects to
label lower levels of the hierarchy if the participant judges the probability of one
of these top-level pathologies being present is greater than 10%. In addition,
subjects are always asked the probability the patient case is normal. When
relevant, we also ask a number of follow-up questions for pathologies, these are
described in more detail in Section 2.3.

2.1.7 Attrition

We expect minimal attrition based on pilot experiments. The attrition we did
encounter in piloting occured only at the start of the experiment and therefore
did not complete any reads.

2.1.8 Subject Incentives

Subjects are compensated at market rates through the teleradiology �rms we
contract with. We additionally randomize 50% of respondents to receive an
incentive payment following the binarized scoring rule of Hossain and Okui
2013. This incentive scheme uses a loss function of the mean prediction error,
averaging over patient cases and pathologies, and the respondents earn a �xed
bonus of $120 if a random draw is less than the loss function. We will specify
the distribution so 30% of pilot participants would earn the bonus. We intend
on pooling incentivized and non-incentivized respondents in our analysis but
will report the main results separately for each group and test for di�erences.

2.2 Methodological Details

2.2.1 Ground Truth

We follow the medical AI literature (Irvin et al. 2019) and our previous pre-
registration to generate a strong ground truth based on the majority assessment
of a group of board certi�ed radiologists. As we collect continuous probabilities,
we can also de�ne an alternative ground truth to be the average probability
among the ground-truth labelers. This alternative ground truth uses all infor-
mation and is more a�ected by radiologists with extreme assessments. We will
report results using both average probabilities and a binary ground truth that
applies a cuto� rule to the continuous ground truth labels. This binary version
of ground truth is robust to certain misspeci�ed probability reports (Wallsten
and Diederich 2001; Ariely et al. 2000).
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The radiologists who help us with ground truth labeling are not the same
radiologists who participate in the experiment. Their decisions are collected
using the same interface that we describe above. Ground truth labeling is based
on access to both the X-ray and the same patient information that we provide
in the treatments with contextual information.

2.3 Variables

The interface asks for assessments for all top level conditions. Responses for
lower level decisions are only elicited when the parent condition was estimated
to be su�ciently likely (above 10%). If a pathology is shown (i.e. it is a top-
level pathology or its parent is judged to have at least a 10% probability), we
always ask participants to assess the probability that the pathology is present.
If the probability is judged to be above 10%, we ask relevant follow-up questions
including the size, severity, placement, and if they would recommend treating or
following up on the condition.1 These questions are only asked when relevant for
a particular pathology. We collect the entire clickstream data that results from
radiologists interaction with this interface. Our analysis focuses on a variety of
outcomes that are generated by interaction with the interface. Some of the key
outcomes are the probability assessment, the follow up decisions, time spent,
interaction with the x-ray and with the patient information, survey responses,
and comprehension checks. We might construct additional outcomes variables
from the entire clickstream data if a deeper understanding of subjects responses
calls for it. In addition we might use a variety of moderators for heterogeneity
analysis if the analysis requires it.

3 Empirical Strategy

In the following we describe some of the key speci�cations that we plan to use
to analyze the experimental data.

3.1 Reduced form treatment e�ects

3.1.1 E�ects of treatment arms

Let Yirt be an outcome variable for patient case i by radiologist r in treatment
arm t. The pre-speci�ed set of outcome variables are provided below. We will
report the results of the following regression

Yirt = γ0 + γt + εirt

where we estimate the average treatment e�ect of treatment arm t ∈ {AI,CH,Both}
(γt) relative to the control arm of no AI assistance and no clinical history. We

1The �nal treatment decision is not typically made by radiologists, and in the instructions
participants are told to make this decision as if they were the referring physician.
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will cluster standard errors at the radiologist level. When pooling decisions
across pathologies, we may add pathology �xed e�ects.

We will test di�erences in γt. In addition, we will also compare the e�ects of
contextual information conditional on having access to AI or not. Similarly, we
will compare the e�ects of AI conditional on having access to clinical information
or not. In particular, we will test the following hypotheses.

1. Treatment e�ects of every condition relative to control: For all t, test the
null that γt = 0

2. E�ect of AI when clinical history is already provided. Test the null that
γCH = γBoth

3. E�ect of clinical history when AI is already provided. Test the null that
γAI = γBoth

4. E�ect of AI and clinical history (pooling across other randomizations)

To test heterogeneity by radiologist skill, we will estimate treatment e�ects for
each radiologist by estimating

Yirt = γr + γrt + εirt

where γr is the radiologist speci�c intercept and γrt is the treatment e�ect es-
timate for radiologist r. We will naturally be underpowered to estimate any
particular γrt, but we can test for radiologist skill heterogeneity and hetero-
geneity in treatment e�ects by radiologist skill by testing the following two
hypotheses.

1. The joint null that γ1 = γ2 = . . . = γR

2. The null that βt = 0 in the regression γrt = β0 + βtγr + νr

We will also test for heterogeneous treatment e�ects based on the AI signal and
how informative it is by estimating the equation

Yirt = γ0 + γt + β0cA,i + βtcA,i + εirt

where cA,i measures the uncertainty of the AI prediction. We will consider
speci�cations that pool or separate treatments with and without clinical history.

Finally, we will test for heterogeneity in radiologist follow-up / treatment
decisions given their diagnostic assessment.

3.1.2 Summary measures

The outcome measures above will also be summarized in tables, showing the
mean and the standard deviations, and histograms that describe the distribu-
tions. We will also report comparisons of the AI performance and the radiolo-
gists under various treatments using their assessed probabilities pirt.

5



3.2 Outcome De�nitions

3.2.1 Outcomes

To measure the quality of diagnostic assessments and decisions we will primarily
focus on the following outcomes variables for each pathology group.

1. Error in probability assessment

2. Incorrect treatment/followup recommendation

The primary pathology groups we will consider are:

1. Pooled outcomes for all pathologies

2. Pooled outcomes for all AI assisted pathologies

3. Pooled outcomes for all top-level AI assisted pathologies

Our secondary analysis will consider:

1. Time-taken and measures of e�ort exerted to parse the information in the
X-ray and the clinical history, with and without AI

2. Treatment e�ects on distance from AI signal

3. Heterogeneity of treatment e�ects by pathology prevalence and AI perfor-
mance

3.3 Detecting Automation Bias or Neglect

We will follow the framework introduced in Grether 1980 and described in more
detail in Benjamin 2019 to measure automation bias or neglect in a reduced form
manner. Speci�cally, we will model radiologist updating using the following
model

π(ω = 1|SA, SE)

π(ω = 0|SA, SE)
= eα

(
P (SA|ω = 1, SE)

P (SA|ω = 0, SE)

)c (
P (ω = 1|SE)

P (ω = 0|SE)

)d

where π(·) is the reported posterior probability given both the expert and AI
signal, P (SA|ω, SA) is the likelihood of the AI signal given the ground truth and
expert signal, and P (ω|SE) is the probability a pathology is present given only
the expert signal. We can rewrite this equation as

log
π(ω = 1|SA, SE)

π(ω = 0|SA, SE)
= α+c

(
log

(
P (ω = 1|SA, SE)

P (ω = 0|SA, SE)

)
− log

(
P (ω = 1|SE)

P (ω = 0|SE)

))
+d log

(
P (ω = 1|SE)

P (ω = 0|SE)

)
.

(1)
Notice this model nests radiologists updating according to Bayes rule when
α = 0 and c = d = 1. We can estimate this using linear regression when
radiologists read the same case with and without AI assistance and using a
moment-based estimator. The latter can also be used when radiologists read
di�erent cases with and without AI assistance.

6



Figure 1: Minimum detectable e�ects

4 Power Calculations

We run two sets of power calculations for the two primary analyses we will be
conducting � estimating reduced form treatment e�ects and estimating automa-
tion bias or neglect.

4.1 Treatment E�ects Power Calculations

For the reduced form treatment e�ects, we leverage the experiment described in
AEA RCT Registry AEARCTR-0008799. For various numbers of participants
(N), we repeatedly sample data from the experimental data and estimate the
treatment e�ects we describe above to measure power. We sample from this
data and �nd the following minimum detectable e�ects for the average treatment
e�ects. With 200 radiologists we are powered to detect a 4% improvement in
accuracy, so this experiment is powered to rule out relatively larger e�ects of
AI. In the previous experiment we found evidence of heterogeneous e�ects for
di�erent values of the AI signal, and we are powered at roughly 60% to detect
heterogeneous e�ects of a similar magnitude.

4.2 Automation Bias Power Calculations

To estimate power for detecting automation bias or neglect we again use the
experiment described in AEA RCT Registry AEARCTR-0008799. We estimate
power by sampling radiologists and patient cases with replacement and then es-
timating the model described in section 3.3. We estimate the �rst step described
in section 3.3 using a linear regression model at the radiologist-pathology level
and then estimate equation 1, pooling data across radiologists to estimate the
grand-mean. Given the large observed deviations from the Bayesian parameters,
the experiment should be well powered.
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Figure 2: Power to detect automation bias / neglect

5 Structural Model

We plan to estimate a simple rational benchmark model of how various informa-
tion sources are combined by the subjects into an assessment of the probability
of a disease. Below, we outline a simple conceptual framework that will be the
basis of the structural model we will estimate. We expect to uncover behavioral
biases from the analysis above that we will extend the model to allow for.

Let ω ∈ Ω be the true condition of the patient, where Ω is a �nite set. There
two mappings. The �rst one is I : Ω → Rn×m×l. I represents the imaging
technology. It maps from the state of the world (the presence of disease) to a
multidimensional array, which represents the image. For example, if the image
is a gray scale image then n×m is the image resolution and l = 1. The image
is then given by a matrix, where each entry is a gray shade. In addition there is
a mapping from the true state of the world to auxiliary information A : Ω → Ψ.
Such auxiliary information might consist of written notes about the patient.

Each subject has prior beliefs µ (ω) and the utility function of taking action
a ∈ A given that the true state is ω is given by u (a, ω) . In the diagnostic
decision for a single disease, ω ∈ {0, 1} indicates the presence of pneumonia and
a ∈ {0, 1} indicating diagnosis. The utility function is

u (a, ω) = −cFP 1 {ω = 0, a = 1} − cFN1 {ω = 1, a = 0} ,

where cFP and cFN are the false positive and false negative rates.
The agent may have access to up to two types of signals. One is generated

by the machine, S1, and the second is directly observed by the agent (doctor),
S2. For tractability of the current exposition, say that S1 and S2 are �nite sets.
The likelihoods of the signals are given by

π (s1|ω) , π (s2|ω) , andπ (s = (s1, s2) |ω).

Note that the signals need not be independent. So, π (s1, s2|ω) ̸= π (s1|ω)π (s2|ω) .
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Given signal s, the Bayesian posterior is

p∗ (ω|s) = π (s|ω)µ (ω)∑
ω′ π (s|ω′)µ (ω′)

.

and, the optimal action is

a∗ (s) = argmax
a

Eπ

[∑
ω

u (a, ω) p (ω|s)

]
.

The data collected in our experiment directly measures a∗ (s) and the doctor's
reported value of p (ω| s) for each information environment. The latter can be
compared with the Bayesian posterior. Moreover, in the simple binary case, we
can use the decisions and the posteriors to estimate the relative costs of false
positives and false negatives. Note that only the relative costs of false positives
and false negatives are identi�ed.

While this model assumes �nite signal spaces, we hope to consider a model
with continuous signals, for example a normal-normal model. For example, one
might assume that (s1, s2) ∼ N (0,Σ) with a value of Σ that has the elements
on the main diagonal normalized to 1. In this case, the posterior given s1 and
s2 can be easily solved since the posteriors given s1 and s2 can be inverted to
yield s1 and s2. Then, the report of the radiologist when AI assistance is present
can be compared to the Bayesian outcome to determine whether the radiologist
exhibits automation bias or neglect, and how much the radiologists' assessment
deviates from the optimal posterior and the AI assessment.

This baseline model imposes a lot of homogeneity in radiologist decisions.
We plan to build in heterogeneity and unobservable shocks in subject decision-
making. Sources of heterogeneity include radiologist skill � measures based on
the precision of their signal � and the relative costs of false positives and false
negatives that they use in their recommendations. These relative costs may
also vary by patient since not all patients should be treated identically given an
assessment.

We will further develop the structural model at later stages of the project
and may adapt the model to the �ndings in the experiment.

5.1 Optimal Delegation

We will use our experimental results and the �nal version of our model to com-
pute counterfactuals of optimal collaboration between humans and AI. Setups
for collaboration include a determination of which cases should be delegated
to the radiologist, whether or not and for which cases should AI assistance be
provided, whether AI predictions should be combined ex-post, and whether AI
assistance should be provided simultaneously or sequentially. Combinations of
these approaches, on a case-speci�c basis based either on case characteristics or
on AI predictions or on a diagnosis-speci�c basis, could also be important.
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6 Appendix: Experimental Interface

(a) No Clinical History / No AI

(b) Clinical History / No AI

Figure 3: Experiment Interface
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(a) No Clinical History / AI

(b) Clinical History / AI

Figure 4: Experiment Interface
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7 Appendix: Endline Survey

1. How did the AI tool impact your work?

(a) It in�uenced the assessment of which pathologies were present. [Lik-
ert scale]

(b) It in�uenced the treatment/follow-up recommendation. [Likert scale]

(c) It in�uenced the e�ort I exerted overall. [Likert scale]

(d) In what types of cases did you disagree or ignore the AI prediction?
[Open ended]

(e) What are your general attitudes towards AI in clinical diagnostics
and did they changed? [Open ended]

(f) How can the AI tool be improved? [Open ended]

(g) Additional comments about the AI support tool. [Open ended]

2. How did the patient history impact your work?

(a) It in�uenced the assessment of which pathologies were present. [Lik-
ert scale]

(b) It in�uenced the treatment/follow-up recommendation. [Likert scale]

(c) It in�uenced the e�ort I exerted overall. [Likert scale]

(d) In what types of cases did the patient history matter? [Open ended]

(e) Additional comments about the patient history. [Open ended]

3. General questions on the AI tool and the experiment.

(a) Do you think your work would bene�t from AI support in a real
clinical setting? [Likert scale]

(b) In your opinion, how accurate was the AI support tool? [Very inac-
curate, Inaccurate, Somewhat accurate, Accurate, Very Accurate]

(c) In your opinion, how appropriate was the clinical hierarchy for the
clinical task. [Very inappropriate, Inappropriate, Somewhat appro-
priate, Appropriate, Very Appropriate]

(d) Would your decision-making routine adapt over time if your clinic
permanently adopted an AI support tool? If so, how? [Open ended]

(e) How realistic did you �nd this exercise compared with your typical
work routine? [Open ended]

(f) Did you discuss this experiment with any other radiologists? [Yes,
No]

(g) If so, were they part of the experiment? [Yes, No, N/A]

4. Radiologist background
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(a) How many years of experience do you have as a practicing radiologist?
[Integer response]

(b) Please list any certi�cations you have. [Open ended]

(c) Was your degree from an institution inside the United States? [Yes,
No]

(d) How much experience do you have with AI tools in radiology? [No
experience, Some experience, Signi�cant experience]

(e) Please enter your name. [Open ended]

(f) Please enter your email address. [Open ended]
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