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1 Introduction

1.1 Motivation

Arti�cial intelligence (AI) has been hailed as a general-purpose technology with
similar transformative potential as the steam engine and electricity (Brynjolf-
sson and Mitchell 2017). But, as opposed to the transformation during the
industrial revolutions, AI holds the potential of displacing humans from tasks
that require complex reasoning (Webb 2019). This feature has caused great
concern about the role of human work, even in highly skilled occupations. One
domain where this transformation is already underway due to rapid progress in
machine learning is medical diagnostics. For example, the CheXNet classi�er
has recently surpassed the performance of experts (Rajpurkar, Irvin, et al. 2017,
and see also Liu et al. 2020 for a review).

Although many studies in computer science demonstrate super human per-
formance of AI algorithms, few take into account that human work takes place
in a broader work context. Unlike the AI, humans have access to contextual
information and may tailor their decision rule to the respective context. For
instance, doctors might want to avoid over-prescribing antibiotics and auxiliary
patient data might reveal whether a pneumonia is bacterial or not and, hence,
whether the patient needs antibiotics. Partly for this reason, diagnostic AI tools
have primarily been used as an aid to human experts, which is likely also true
for the foreseeable future.

We plan to investigate how human experts use AI assistance and what role
contextual information plays in such use. We design an experiment in which
radiologists diagnose historical patient cases. The experiment is designed to
measure (i) the importance of contextual information in the comparison between
radiologists and AI, and (ii) how human experts incorporate AI assistance into
their assessments and decision-making. We plan to use these data to investigate
the optimal design of the collaboration between the AI and radiologists.
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1.2 Prior Work

The proposed research makes contributions to several areas. One strand of lit-
erature uses machine learning algorithms trained on available hard information
to benchmark the performance of human decisions. We add to this literature by
assessing whether information available only to humans are important factors in
decision-making, whether it a�ects the assessment of an outcome or preferences
over the various options. For example, in the decision to grant a bail, judges
must predict the probability that a defendant might fail-to-appear at the trial
but they also weigh other factors when making a judgement (Kleinberg et al.
2015; Stevenson and Doleac 2021). Relatedly, Mullainathan and Obermeyer
(2019) demonstrate that machine learning models can be used to prevent sys-
tematic over- or under-testing for heart attacks. Such over or under-testing may
arise both because the doctors preferences di�er or because doctors do not cor-
rectly encorporate the information that is available. Our experiment is designed
to distinguish between these two explanations.

Our experiment addresses how humans make use of information provided by
an AI and how important contextual information is in this process. At least in
the short run it may be more realistic to give humans discretion in how to use
AI in their existing work context. In the longer run, the contextual information
that only humans have access to might change as AI technologies improve and
become more comprehensive. However, it is likely that humans will be able to
process other forms of contextual information that AI tools cannot. The results
from the experiment will inform us whether and how human-AI interaction can
improve decision making or if it may be detrimental.

With an understanding of how humans use the algorithm's information we
are then able to investigate how human-AI collaboration should be optimally
organized. Although the majority of existing studies have focused on a head-
to-head comparison of AI with humans, a handful of recent studies also explore
collaborative setups between AI and humans (Kim et al. 2020; Patel et al.
2019; Rajpurkar, O'Connell, et al. 2020). Our study goes beyond a pure as-
sessment of the relative accuracy of such collaborations and is explicitly geared
towards uncovering how radiologists incorporate AI information in their work-
�ow. Moreover, a limitation of the existing studies is that either the clinical
context is ignored or is a priori expected to have limited impact. By collecting
probabilistic assessments, time spent, and radiologists preferences, we can quan-
tify how e�ectively human experts use the information of the AI using a decision
framework. This approach allows us to design the optimal form of collaboration
between humans and AI tools.

The forms of collaboration between humans and the AI can be classi�ed into
three broad categories. Our experiment and subsequent planned model-based
analysis of the data speaks to the trade-o�s that determine which approach is
optimal. The �rst approach is to determine whether the decision on a given
case should be delegated to either the human or the AI tool (e.g. Mozannar
and Sontag 2020). In this approach, the machine typically clears the case with
no �ndings or �ags it for human review. The bene�t, if the machine has a very
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low false negative rate, is that the costly step of human interpretation can be
minimized. Our approach adds to this analysis in two ways � (i) we evaluate
whether and when delegation is advisable because of contextual information, and
(ii) we distinguish between two di�erent reasons for delegation decisions, namely
heterogeneity in radiologist skill and in their approach to treatment/follow-up.

The second approach is to keep the human in the loop for each decision with
the AI tool providing assistance. Whether or not this step follows a delegation
step, this approach attempts to take advantage of both human and AI input in
forming the prediction. Our analysis may identify several reasons why this setup
might result in better or worse decsions, namely contextual information which
weighs in favor of obtaining human input, biased processing of the information
provided by the AI tool, and heterogeneity in approach to treatment. It is
necessary to understand which source dominates in order to appropriately shape
human-AI interaction. For example, biased information processing suggests
training experts to use the tool better while heterogeneity in treatment approach
points to enforcing more uniform standards in clinical decision-making.

In the third approach the human provides an AI tool with the interpretation
of the image, but the tool makes the �nal decisions. This approach is of concep-
tual interest, although current liability and ethical issues in the medical context
may make implementation infeasible. In principle, the approach can improve on
human decisions if humans either sub-optimally incorporate the AI prediction
from the second approach into their decision-making, or if humans inconsistently
apply decision-rules given a predicted likelihood. This latter concern may be of
importance if humans judge the relative costs of false positives and false nega-
tives heterogeneously or inconsistently, but the medical community agrees on a
standard that should be followed.

Finally, we contribute to a literature that assesses heterogeneity in the skills
and preferences of medical professionals by evaluating their decision-making.
Our setting is closest to Chan, Gentzkow, and C. Yu (2019), who also study de-
cisions by radiologists using observational data. Our experimental design is able
to directly disentangle radiologist preferences and assessment accuracy, instead
of using a model-based approach. The focus on AI assistance and contextual
information further distinguishes our work from theirs.

1.3 Research Questions

We plan to address the following research questions:

� How important is contextual information in evaluating relative perfor-
mance of humans and AI?

� How does heterogeneity in radiologist skill and practice style a�ect their
performance?

� How well do humans incorporate information that the AI provides? Do
they overweight or underweight their own signal relative to the AI's signal?

� How to optimally organize the collaboration between humans and AI?
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2 Experimental Design

2.1 Overview of the Experiment

2.1.1 Patient Cases from Stanford Health

The patient cases for the experiment come from Stanford University's health
care system. We started with a contiguous block of 2,203 patient cases that oc-
curred in the Stanford system during 2020. After excluding cases that referenced
a previous case, 502 cases remained. We then dropped cases of minors, those
with multiple images, and those with low quality images as manually labeled by
a practicing radiologist. We ended up with a �nal set of 324 patient cases. Each
patient case consists of a frontal chest x-ray and the patient's clinical history.
The patient's clinical history contained vital information such as weight, blood
pressure, temperature, pulse and age, recent labs, and the referring physician's
indication.

2.1.2 Treatment Arms

There are two treatment arms that vary the availability of the AI prediction and
the patient's clinical history in a 2x2 design. That is, x-rays are read with (1)
no supporting information, (2) the patient's clinical history, (3) simultaneous
AI predictions, and (4) both the patient's clinical history and simultaneous AI
predictions. An example patient case in each of the treatment arms are shown
in Figure 1 and Figure 2.

2.1.3 AI Algorithm

The AI assistance is based on a convolutional neural-network computer-vision
algorithm for chest X-rays (Rajpurkar, Irvin, et al. 2017). The output of the
algorithm is calibrated to return the probability that each of fourteen patholo-
gies were present (including abnormality and support devices). This algorithm
has been shown to perform at or near expert human levels across �ve of these
pathologies that were selected for the CheXpert competition (Irvin et al. 2019).

2.1.4 Power Calculations

Our power calculations are based on a very small pilot study that acquired 10
reads in each arm from �ve radiologists. We simulate draws from the pilot
sample for the top-level pathology Airspace Opacity to determine the sample
size required to achieve 80% power at 1% signi�cance. We choose Airspace
Opacity because it has a reasonable treatment e�ect of 1.5 percentage points
improvement in accuracy in the AI condition during the pilot. We sample
radiologist-patient cases with replacement from the pilot for a grid of potential
sample sizes (per treatment arm). We allocated the N cases to 10 �ctitious
radiologists. We then estimated the empirical model, regressing the prediction
error on radiologist �xed e�ects and a treatment indicator. Power for a given
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N is then the share of simulations in which we rejected the null of no treatment
e�ect. For each N, we ran 200 simulations. Based on these computations we
require at least 4000 reads in total. In order to be conservative, we are aiming
for twice this number.

2.1.5 Subject Recruitment and the Experimental Design

We conduct a within-subject design with a group of radiologists from the Vin-
Mac Healthcare System in Vietnam. We will aim for 30-35 subjects in this
design. In this design, each radiologist will participate in four experimental
rounds, where they will read each patient case under every experimental con-
dition. We will ask them to read the same number of images in each of the
experimental conditions, but the same patient case will not appear multiple
times within a round. Between rounds there will be a washout period of at
least two weeks to prevent radiologists from remembering cases and their re-
sponses during the previous round. In this way, subjects read each image in all
experimental conditions, allowing us to measure how the treatments in�uence
assessments and decisions up to reporting error.1 The order in which radiolo-
gists go through the di�erent treatments in each session will be randomized to
account for order e�ects. For each radiologist, we will randomly sample 60 cases
to be read under each experimental condition.2 We will then randomly select
a sequence of images from the set of image sequences satisfying the following
two criteria: (1) there are 15 cases in each treatment arm per round and (2)
each image is read in all treatment arms across the rounds. The advantage
of the within-subject design is that we observe each radiologist making many
decisions under each treatment arm, which makes it easier to detect e�ects as it
can control for across-subject heterogeneity. In addition, this design facilitates
estimation of an economic model of decision making described later on that is
used to study automation bias or neglect.

2.1.6 Interface

All data is collected through the experimental interface that we developed. This
interface was developed using the o-tree framework (Chen, Schonger, and Wick-
ens 2016) and deployed on a Heroku server. We ask subjects to label up to 104
thoracic pathologies, which are structured in a hierarchy with four levels to min-
imize the burden on participants. Subjects are �rst asked the probability the
chest x-ray contains one of 9 top-level pathologies and we only ask subjects to
label lower levels of the hierarchy if the participant judges the probability of one

1We could also estimate how treatments in�uence assessments by randomly allocating cases
to treatment arms. We adopt the approach described above because reading each case in every
treatment arm facilitates estimation of a structural model that is described in more detail in
Section 3.3.

2Therefore, we will obtain 7,200 reads if 30 radiologists complete the experiment, and 8,400
reads if 35 radiologists complete the experiment. We will contact 35 radiologists simultane-
ously, but expect that a few radiologists may not complete the experiment or provide usable
data.
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of these top-level pathologies being present is greater than 10%. In addition,
subjects are always asked the probability the patient case is normal. When
relevant, we also ask a number of follow-up questions for pathologies, these are
described in more detail in Section 2.3.

2.1.7 Attrition

To minimize attrition for the within subject design, we send out reminders to
subjects to complete the experimental task. Based on our pilot results we expect
that with reminders all subjects will �nish the assigned task. All radiologists
go through all treatments in a random order. We therefore do not expect dif-
ferential attrition across treatment and control conditions. We will track how
long it took each subject to complete the task.

2.2 Methodological Details

2.2.1 Ground Truth

We follow the medical AI literature (Irvin et al. 2019) and generate a strong
ground truth based on the majority assessment of a group of board certi�ed
radiologists. As we collect continuous probabilities, we can also de�ne an al-
ternative ground truth to be the average probability among the ground-truth
labelers. This alternative ground truth uses all information and is more a�ected
by radiologists with extreme assessments. We will report results using both
average probabilities and a binary ground truth that applies a cuto� rule to the
continuous ground truth labels. This binary version of ground truth is robust
to certain misspeci�ed probability reports (Wallsten and Diederich 2001; Ariely
et al. 2000).

The radiologists who help us with ground truth labeling are not the same
radiologists who participate in the experiment. Their decisions are collected
using the same interface that we describe above. Ground truth labeling is based
on access to both the X-ray and the same patient information that we provide
in the treatments with contextual information.

2.3 Variables

The interface asks for assessments for all top level conditions. Responses for
lower level decisions are only elicited when the parent condition was estimated
to be su�ciently likely (above 10%). If a pathology is shown (i.e. it is a top-level
pathology or its parent is judged to have at least a 10% probability), we always
ask participants to assess the probability that the pathology is present. If the
probability is judged to be above 10%, we ask relevant follow-up questions in-
cluding the size, severity, placement, and if they would recommending treating
or following up on the condition.3 These questions are only asked when relevant

3The �nal treatment decision is not typically made by radiologists, and in the instructions
participants are told to make this decision as if they were the referring physician.
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for a particular pathology. We collect the entire clickstream data that results
from radiologists interaction with this interface. Our analysis focuses on a va-
riety of outcomes that are generated by interaction with the interface. Some of
the key outcomes are the probability assessment, the follow up decisions, time
spent, interaction with the x-ray and with the patient information, survey re-
sponses, and comprehension checks. We might construct additional outcomes
variables from the entire clickstream data if a deeper understanding of subjects
responses calls for it. In addition we might use a variety of moderators for
heterogeneity analysis if the analysis requires it.

3 Empirical Strategy

In the following we describe some of the key speci�cations that we plan to use
to analyze the experimental data.

3.1 Reduced form treatment e�ects

3.1.1 E�ects of treatment arms

Let Yirt be an outcome variable for patient case i by radiologist r under ex-
periment arm t, where the control treatment arm is the No AI/No contextual
information treatment. The pre-speci�ed set of outcome variables are provided
below. We will report the results of the following regression

Yirt = γ0 + γt + εirt

where we estimate the average treatment e�ect of treatment arm t ∈ {AI,CH,Both}
(γt) relative to the control arm of no AI assistance and no clinical history. We
will cluster standard errors at the radiologist level. When pooling decisions
across pathologies, we may add pathology �xed e�ects.

We will test di�erences in γt. In addition, we will also compare the e�ects of
contextual information conditional on having access to AI or not. Similarly, we
will compare the e�ects of AI conditional on having access to clinical information
or not. In particular, we will test the following hypotheses.

1. Treatment e�ects of every condition relative to control: For all t, test the
null that γt = 0

2. E�ect of AI when clinical history is already provided. Test the null that
γCH = γBoth

3. E�ect of clinical history when AI is already provided. Test the null that
γAI = γBoth

To test heterogeneity by radiologist skill, we will estimate treatment e�ects for
each radiologist by estimating

Yirt = γr + γrt + εirt
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where γr is the radiologist speci�c intercept and γrt is the treatment e�ect es-
timate for radiologist r. We will naturally be underpowered to estimate any
particular γrt, but we can test for radiologist skill heterogeneity and hetero-
geneity in treatment e�ects by radiologist skill by testing the following two
hypotheses.

1. The joint null that γ1 = γ2 = . . . = γR

2. The null that β = 0 in the regression γrt = β0 + βγr + νr

Finally, we will also test for heterogeneity in radiologist follow-up / treatment
decisions given their diagnostic assessment.

3.1.2 Summary measures

The outcome measures above will also be summarized in tables, showing the
mean and the standard deviations, and histograms that describe the distribu-
tions. We will also report comparisons of the AI performance and the radiol-
ogists under various treatments using their assessed probabilities pirt. In both
designs, we will aggregate the latter. In the within radiologist design, we will
report these by radiologist.

3.2 Outcome De�nitions

3.2.1 Outcomes

To measure the quality of diagnostic assessments and decisions we will primarily
focus on the following primary outcomes variables for each pathology group.

1. Error in probability assessment

2. Incorrect treatment/followup recommendation

The primary pathology groups we will consider are:

1. Pooled outcomes for all pathologies

2. Pooled outcomes for all AI assisted pathologies

Our secondary analysis will consider:

1. Time-taken and measures of e�ort exerted to parse the information in the
X-ray and the clinical history, with and without AI

2. Heterogeneity of treatment e�ects by pathology prevalence and AI perfor-
mance
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3.3 Structural Model

We plan to estimate a simple rational benchmark model of how various informa-
tion sources are combined by the subjects into an assessment of the probability
of a disease. Below, we outline a simple conceptual framework that will be the
basis of the structural model we will estimate. We expect to uncover behavioral
biases from the analysis above that we will extend the model to allow for.

Let ω ∈ Ω be the true condition of the patient, where Ω is a �nite set. There
two mappings. The �rst one is I : Ω → Rn×m×l. I represents the imaging
technology. It maps from the state of the world (the presence of disease) to a
multidimensional array, which represents the image. For example, if the image
is a gray scale image then n×m is the image resolution and l = 1. The image
is then given by a matrix, where each entry is a gray shade. In addition there is
a mapping from the true state of the world to auxiliary information A : Ω → Ψ.
Such auxiliary information might consist of written notes about the patient.

Each subject has prior beliefs µ (ω) and the utility function of taking action
a ∈ A given that the true state is ω is given by u (a, ω) . In the diagnostic
decision for a single disease, ω ∈ {0, 1} indicates the presence of pneumonia and
a ∈ {0, 1} indicating diagnosis. The utility function is

u (a, ω) = −cFP 1 {ω = 0, a = 1} − cFN1 {ω = 1, a = 0} ,

where cFP and cFN are the false positive and false negative rates.
The agent may have access to up to two types of signals. One is generated

by the machine, S1, and the second is directly observed by the agent (doctor),
S2. For tractability of the current exposition, say that S1 and S2 are �nite sets.
The likelihoods of the signals are given by

π (s1|ω) , π (s2|ω) , andπ (s = (s1, s2) |ω).

Note that the signals need not be independent. So, π (s1, s2|ω) ̸= π (s1|ω)π (s2|ω) .
Given signal s, the Bayesian posterior is

p∗ (ω|s) = π (s|ω)µ (ω)∑
ω′ π (s|ω′)µ (ω′)

.

and, the optimal action is

a∗ (s) = argmax
a

Eπ

[∑
ω

u (a, ω) p (ω|s)

]
.

The data collected in our experiment directly measures a∗ (s) and the doctor's
reported value of p (ω| s) for each information environment. The latter can be
compared with the Bayesian posterior. Moreover, in the simple binary case, we
can use the decisions and the posteriors to estimate the relative costs of false
positives and false negatives. Note that only the relative costs of false positives
and false negatives are identi�ed.
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While this model assumes �nite signal spaces, we hope to consider a model
with continuous signals, for example a normal-normal model. For example, one
might assume that (s1, s2) ∼ N (0,Σ) with a value of Σ that has the elements
on the main diagonal normalized to 1. In this case, the posterior given s1 and
s2 can be easily solved since the posteriors given s1 and s2 can be inverted to
yield s1 and s2. Then, the report of the radiologist when AI assistance is present
can be compared to the Bayesian outcome to determine whether the radiologist
exhibits automation bias or neglect, and how much the radiologists' assessment
deviates from the optimal posterior and the AI assessment.

This baseline model imposes a lot of homogeneity in radiologist decisions.
We plan to build in heterogeneity and unobservable shocks in subject decision-
making. Sources of heterogeneity include radiologist skill � measures based on
the precision of their signal � and the relative costs of false positives and false
negatives that they use in their recommendations. These relative costs may
also vary by patient since not all patients should be treated identically given an
assessment.

We will further develop the structural model at later stages of the project
and may adapt the model to the �ndings in the experiment.

3.4 Optimal Delegation

We will use our experimental results and the �nal version of our model to com-
pute counterfactuals of optimal collaboration between humans and AI. Setups
for collaboration include a determination of which cases should be delegated
to the radiologist, whether or not and for which cases should AI assistance be
provided, whether AI predictions should be combined ex-post, and whether AI
assistance should be provided simultaneously or sequentially. Combinations of
these approaches, on a case-speci�c basis based either on case characteristics or
on AI predictions or on a diagnosis-speci�c basis, could also be important.
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4 Appendix: Experimental Interface

(a) No Clinical History / No AI

(b) Clinical History / No AI

Figure 1: Experiment Interface
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(a) No Clinical History / AI

(b) Clinical History / AI

Figure 2: Experiment Interface
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5 Appendix: Endline Survey

1. How did the AI tool impact your work?

(a) It in�uenced the assessment of which pathologies were present. [Lik-
ert scale]

(b) It in�uenced the treatment/follow-up recommendation. [Likert scale]

(c) It in�uenced the e�ort I exerted overall. [Likert scale]

(d) In what types of cases did you disagree or ignore the AI prediction?
[Open ended]

(e) What are your general attitudes towards AI in clinical diagnostics
and did they changed? [Open ended]

(f) How can the AI tool be improved? [Open ended]

(g) Additional comments about the AI support tool. [Open ended]

2. How did the patient history impact your work?

(a) It in�uenced the assessment of which pathologies were present. [Lik-
ert scale]

(b) It in�uenced the treatment/follow-up recommendation. [Likert scale]

(c) It in�uenced the e�ort I exerted overall. [Likert scale]

(d) In what types of cases did the patient history matter? [Open ended]

(e) Additional comments about the patient history. [Open ended]

3. General questions on the AI tool and the experiment.

(a) Do you think your work would bene�t from AI support in a real
clinical setting? [Likert scale]

(b) In your opinion, how accurate was the AI support tool? [Very inac-
curate, Inaccurate, Somewhat accurate, Accurate, Very Accurate]

(c) In your opinion, how appropriate was the clinical hierarchy for the
clinical task. [Very inappropriate, Inappropriate, Somewhat appro-
priate, Appropriate, Very Appropriate]

(d) Would your decision-making routine adapt over time if your clinic
permanently adopted an AI support tool? If so, how? [Open ended]

(e) How realistic did you �nd this exercise compared with your typical
work routine? [Open ended]

(f) Did you discuss this experiment with any other radiologists? [Yes,
No]

(g) If so, were they part of the experiment? [Yes, No, N/A]

4. Radiologist background
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(a) How many years of experience do you have as a practicing radiologist?
[Integer response]

(b) Please list any certi�cations you have. [Open ended]

(c) Was your degree from an institution inside the United States? [Yes,
No]

(d) How much experience do you have with AI tools in radiology? [No
experience, Some experience, Signi�cant experience]

(e) Please enter your name. [Open ended]

(f) Please enter your email address. [Open ended]
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