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code.
†Princeton University, Princeton, NJ, USA, and Busara Center for Behavioral Economics,

Nairobi, Kenya
‡VU Amsterdam, Amsterdam, The Netherlands

1



Abstract

This document outlines the pre-analysis plan (PAP) for a meta-

analysis of randomized control trials (RCTs) which investigate the ef-

fectiveness of psychotherapies for treating depression. We will analyze

a database of psychotherapy RCTs using a set of techniques to test for

and correct for publication bias, estimate power, and calculate pre- and

post-experimental odds. This plan describes the analysis methods that

will be used.

Keywords: Cognitive-Behavioral Therapy, Meta-analysis Publica-

tion Bias, Questionable Research Practices

1. Introduction

Unipolar major depressive disorder (MDD) is one of the most prevalent men-

tal disorders worldwide. The standard therapeutic approach is psychotherapy,

which was first developed in the 19th century and has experienced a surge in

usage since the 1960s. Currently, the most prominent approach to treating

depression is cognitive-behavioral therapy (CBT), which focuses on correct-

ing distorted thinking. More recently, other therapies such as interpersonal

therapy and problem-solving therapy have gained prominence. Psychothera-

pies for depression in general, and CBT in particular, are widely thought to

be well-supported by empirical evidence; so much so that research efforts are

now focused not on validating psychotherapy against control, but on compar-

ing the effectiveness of different forms of psychotherapy to each other [Barth

et al., 2013], or comparing it to medication [Amick et al., 2015]. Existing

meta-analyses comparing psychotherapy against control conditions argue that

it is effective in treating depression [Khan et al., 2012, Cuijpers et al., 2008].

How solid is the empirical evidence on which the widespread acceptance

and usage of psychotherapy rest? We propose to analyze the results of all

randomized experiments that have tested the effectiveness of the seven main

types of psychotherapy against control conditions in adults. Typically these

studies delivered treatment to individuals who were initially diagnoses as de-
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pressed for 8–12 weeks, and then measured depression symptoms. The control

conditions were either a waitlist condition, a placebo drug, or “usual care”,

i.e. referral to mental health services in the community. We use meta-analytic

approaches including recently developed statistical tools to assess and correct

for publication bias, estimate power, and calculate pre- and post-experimental

odds.

2. Data

We obtain data from a database of all randomized controlled trials comparing

psychotherapy to a control condition, initially compiled by Cuijpers et al.

[2008] and recently updated as of January 1, 2017. More detailed information

can found at www.evidencebasedpsychotherapies.org. The data includes all

randomized controlled trials studying the effect of psychotherapy on depression

that contained a control group (either waitlist, placebo, or usual care).

3. Estimation Methods

3.1 P-curve and P-uniform

We will apply and present the results of the p-uniform method [van Assen

et al., 2015]. This approach is based on the fact that if the null hypothesis is

true the p-values of hypothesis tests follow a uniform distribution. Therefore

a true mean of a sampling distribution can be estimated by finding the mean

which produces a distribution of conditional p-values that is closest to the

uniform distribution. Measuring the “closeness” of an empirical and ideal

distribution can be done several ways:

1. Simonsohn et al. [2014b] minimize the Kolmogorov-Smirnov statistic,

equal to the maximum distance between an empirical and ideal cumula-

tive distribution function. This special case of the p-uniform approach

is known as the “p-curve” method.
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2. van Assen et al. [2015] calculate the Fisher statistic, equal to the sum of

negative logarithms of the conditional p-values. If the distribution of p-

values were uniform, this statistic would follow the gamma distribution,

with a shape parameter equal to the number of studies minus two, and

a scale parameter of one. Therefore, their effect size estimate is that

which produces a Fisher statistic closest to the mean of this gamma

distribution. Because probabilities are bounded by 0 and 1, the authors

recommend an estimator which is actually based on the complements of

the p-values. We will calculate both.

3. van Aert et al. [2016] update their previous p-uniform estimator by

noting that the sum of standard uniform random variables follows the

Irwin-Hall distribution. Therefore, they calculate the sum of conditional

p-values and compare it to the mean of the Irwin Hall distribution.

We will report all four of these estimates (including two types of Fisher statis-

tic), both for the sample as a whole and separately for each type of psychother-

apy.

We will also report the results of a test for publication bias based on the

“Fisher statistic” method described in (2) above. Note that the null hypothesis

that there is no publication bias in a set of studies is equivalent to the claim

that the mean effect size of the studies is an unbiased estimator of the true

effect size. This statement can be tested by calculating a p-value for each

study of the hypothesis that the true effect is the mean value among the

studies. Then under the null hypothesis of no publication bias

Lµ̄ = −
K∑
k=1

ln(1− qµ̄k ) ∼ Γ(K − 2, 1)

Where µ̄ is the mean estimated effect size, qxk represents the p-value of study

k for effect size x, and Lx is the Fisher statistic. We reject the null hypothesis

of no publication bias if the Fisher statistic is above the 1 − α
2

quantile or

below the α
2

quantile of the Gamma distribution [Simonsohn et al., 2014a,b,

van Assen et al., 2015, van Aert et al., 2016]. Note, however, that this test
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relies on the same assumptions as the estimator, namely homogeneity of effect

size and researcher honesty.

3.2 Parametric Selection Models

We will implement two models which attempt to explicitly model the publi-

cation bias process. The three-parameter selection model [PSM; Carter et al.,

2017, McShane et al., 2016] approach involves making a distributional assump-

tion about the underlying data-generating process of studies and a specific

selection function for publication bias. Doing so allows for derivation of a

probability distribution function of observed studies. The parameters of that

distribution are then estimated through maximum likelihood. In practice, this

is done by assuming that the sampling distribution of studies is normally dis-

tributed and that publication probability is a step function of the p-value,

with discontinuity at p = 0.05. If effect sizes are standardized, this model is

characterized by three parameters:

1. The mean true effect size.

2. The ratio of the probability of publication of nonsignificant studies to

that of statistically significant studies.

3. A heterogeneity parameter which captures the variation in the the un-

derlying true effect size measured by each study.

McShane et al. [2016] point out that a restricted version of the model, as-

suming complete publication bias (no insignificant studies published) and no

heterogeneity, such that there is only one free parameter, is isomorphic to the

theoretical foundation of p-curve/p-uniform. In this case the only difference

is in identification strategy: p-curve/p-uniform essentially engages in moment

matching, while the 1PSM utilizes a maximum likelihood estimator. Since

maximum likelihood estimators are asymptotically efficient, McShane et al.

[2016] argue (and demonstrate through simulations) that the 3PSM is superior

in a wide variety of settings. The relative difference in estimator performance

is small, though, and under debate at the time of writing [Nelson et al., 2017].
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We will implement the 3PSM using the custom R function available in the

supplementary material of McShane et al. [2016]. We will report the three

parameter estimates for the sample as a whole and separately for each type of

psychotherapy.

Secondly, we will apply another parametric selection model described by

Andrews and Kasy [A-K; 2017]. A-K set up a very general framework for

analyzing the data generating process of observed studies under publication

bias. In practice, however, they make the same distributional and functional

assumptions as McShane et al. [2016] to identify parameters of interest. That

is, publication bias is assumed be to a step function and the distribution of

effect sizes to be normal. In addition, A-K assume that effect sizes and sample

sizes are independent. While this assumption is common — and the foundation

for older, “funnel-plot” tests of publication bias — it is criticized as unrealistic,

given that researchers in practice place great emphasis on power calculations

for determining sample size [Lau et al., 2006].

Making these identifying assumptions allows A-K to derive the cumulative

distribution function of observed effect sizes, and therefore moment-matching

estimators for mean effect size, publication bias, and heterogeneity. We will

implement the A-K estimator using a custom R package, available from the

authors on request.

4. Post-estimation Analysis

Following application of the methods detailed in sections 3.1 and 3.2, we will

generate six preferred estimates of the true effect of cognitive-behavioral ther-

apy on major depression. We decide not to choose between these estimates.

Instead, we illustrate the implications of those estimates, along with the fixed

and random effects meta-analytic estimates, for the literature.
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4.1 Test of Null Effect

For our naive meta-analytic estimate, statistical inference is straightforward.

For the publication bias-corrected estimates, however, constructing valid con-

fidence sets is difficult and subject to assumptions about the data-generating

process of effect sizes. In particular, if there is underlying heterogeneity in the

true effects that studies are estimating, then the calculated standard errors

of the p-curve/p-uniform (Fisher Statistic and Irwin Hall) and Andrews-Kasy

estimators will be lower bounds.

We will address this problem by simulating the distributions of these es-

timators under the null hypothesis that the true mean of the effect size dis-

tribution is zero. Under our simulation framework, these distributions will

be conditioned on: (i) the degree of publication bias, assumed to be a step

function with a discontinuity at statistical significance; (ii) heterogeneity, or

the width of the distribution which generates the true effect size; and (iii) how

aggressively authors engage in “Questionable Research Practices” (QRPs),

sometimes referred to as “p-hacking.”

Let β represent the relative publication probability of a nonsignificant study

and the true effect size underlying each study be drawn from a N
(
0, τ 2

)
dis-

tribution. Furthermore, consider four forms of QRPs: selection between two

dependent variables; optional use of a covariate; optional stopping of data

collection; and optional removal of outliers. Carter et al. [2017] develop an

algorithmic framework for simulating these behaviors in the creation of meta-

analytic samples. Parametrizing the algorithm is complicated, but we consider

the limits of the spectrum that the authors develop: a scenario in which no

researchers engage in QRPs, and a “high” QRP environment in which 50% of

researchers use all four tactics, 40% use the first two, and 10% do not use any.

Therefore we define a set of parameter combinations that characterize a

simulated data-generating process. We generate the eight distributions for

each estimator, characterized by the corners of this set:

1. No publication bias (β = 1), no heterogeneity (τ = 0), and no QRPs.

2. Complete publication bias (β = 0), no heterogeneity (τ = 0), and no
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QRPs.

3. No publication bias (β = 1), severe heterogeneity (τ = 0.5), and no

QRPs.

4. No publication bias (β = 1), no heterogeneity (τ = 0), and a “high”

QRP environment .

5. Complete publication bias (β = 0), severe heterogeneity (τ = 0.5), and

no QRPs.

6. Complete publication bias (β = 0), no heterogeneity (τ = 0), and a

“high” QRP environment.

7. No publication bias (β = 1), severe heterogeneity (τ = 0.5), and a “high”

QRP environment.

8. Complete publication bias (β = 0) , severe heterogeneity (τ = 0.5), and

a “high” QRP environment.

Note that the p-curve/p-uniform estimators take do not consider insignificant

studies and will be unaffected by the differences in publication bias functions.

For each of these distributions we will report the mean and standard error,

along with the implied p-values of the null hypothesis given the observed es-

timates. We make no further inferential judgements about the “true” effect

size.

4.2 Power Analysis

Several authors have considered ways to analyze post-hoc power of published

studies as a proxy for the degree to which the extant literature is distorted by

publication bias [Button et al., 2013, Ioannidis and Trikalinos, 2007, Schim-

mack et al., 2017]. We follow an approach which is most similar in spirit to

Button et al. [2013]: for each of the eight candidate true effects (the fixed and

random effects meta-analytic estimates, and the six corrected estimates), we

will calculate the median post-hoc power in our sample conditional on that

estimate.
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4.3 Bayesian Statistics and the Rejection Ratio

A relatively recent body of literature attempts to develop Bayesian concepts

for the predictive value of hypothesis tests. We focus on the two types of

“rejection ratio” described by Bayarri et al. [2016]. The “pre-experimental”

rejection ratio is defined as the ratio of the probability that a false null is

rejected (otherwise known as the power of the test) to the probability that

a true null is rejected (equal to the significance level for a valid test), i.e.

the ratio of rejection probabilities under H1 and H0 , respectively. We will

calculate and report rejection ratios based on post hoc power conditional on

eight effect sizes: the fixed and random effects meta-analytic estimates and six

corrected estimates.

The “post-experimental” rejection ratio is similar in spirit but takes into

account the actual data. This statistic, Rpost, is equivalent to the Bayes’

factor for a test, i.e. the likelihood of the observed data under H1 over the

likelihood of the observed data under H0. The Bayes’ factor depends on the

null hypothesis, expressed here as a prior distribution, for which a wide class

of models are available. We will calculate four post-experimental rejection

ratios for hypotheses about the true underlying effect size of psychotherapy on

depression for each estimator.

1. A rejection ratioRU based on a prior distribution that is uniform between

0 and the estimated effect size, which is the least conservative prior that

is nonincreasing away from the null hypothesis. In the case where there

is no reason to believe the intervention will work based on prior evidence,

it is natural to make a prior which is nonincreasing away from the null.

2. A rejection ratio RP based on the prior distribution which is a point mass

at the estimated effect size, which is most favorable to the alternative

hypothesis among all priors.

3. We will calculate a rejection ratio RM which is the result of power con-

siderations by using a prior distribution which a single point of unit mass

at the minimum detectable effect size (MDES) with 80% power. That
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is, the effect size for which 80% of the conditional null sampling distri-

bution is above the critical value of a hypothesis test of significance level

0.05. Assuming normality of errors in hypothesis testing, this value is

approximately 2.8 times the standard error of the mean.

4. A rejection ration RN of the prior distribution that the data are normally

distributed with variance equal to one around the estimated effect size.

Using this approach we will report 32 Bayesian rejection ratios in total, pre-

senting a picture of the Bayesian evidential value for psychotherapy that is

sensitive to prior distribution assumptions and estimation strategies.
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