This document outlines the analysis plan for the trial “Using Equivalent Offsets to Test
Reference Dependence: Evidence from Three Experimental Paradigms.” It is organized into

four sections:

e Section 1 introduces the investment game experiment, in which participants accumulate
earnings over successive rounds. We test path-dependent reference points (e.g., the sta-
tus quo in Kahneman and Tversky, 1979) and identify the conditions under which they
update.

e Section 2 presents the effort task experiment, where participants choose between (i) a
lottery with no additional tasks and (ii) a stochastically dominating lottery that requires
additional tasks. Because both lotteries share a common payment, varying this amount
allows us to test expectation-based reference dependence (K6szegi and Rabin, 2006) in

labor supply decisions.

e Section 3 describes the binary lottery choice experiment. Each option includes a common
consequence that varies across questions, enabling a test of expectation-based reference
dependence (Bell, 1985; Loomes and Sugden, 1986; Készegi and Rabin, 2007) for decisions

under risk.

e Section 4 sets out the common econometric testing procedures applied to data from all

three experiments.

1 Analysis Plan of Investment Game

1.1 Experimental Design
1.1.1 Basic Setup

In the experiment, subjects are initially endowed with a random amount S, defined as:
S = 5,4+ S

where S, ~ U[11,12] and S, ~ N(0,0.2%). After receiving S, participants play 50 rounds of

the investment game. In each round, they choose an investment option. Their final cumulative



balance is paid as study compensation.

In round ¢ participants choose between a safe and a risky investment:

e Safe option. The cumulative balance at the end of the round is certain.

— For t = 1: the payoff is S + Ay, with A; ~ N(0,0.22).
— For t > 2: the payoff equals the previous round’s balance (displayed as “current

earnings”) plus A, with A; ~ N(0,0.2%).

e Risky option. The payoff may be either $0.45 above or $0.43 below the corresponding
safe payoff in the same round. A ball drawn from an urn containing 49 blue and 51 red

balls determines the outcome: a blue ball yields the higher payoff, a red ball the lower.

Figure 1: Box of Blue and Red Balls

Given the data-generating structure described above, the payoffs of both the risky invest-
ment and the safe investment covary across rounds, being higher in some rounds and lower in
others. We will explain to the subjects in the instructions that this variation in payoffs reflects
the fluctuations of the economy, which goes through periods of growth and decline through-
out our experiment. This will be easy to communicate as it naturally aligns with the typical

characteristics of financial markets.

1.1.2 Experimental Variation and Interface — Baseline

Figure 2 presents an example screenshot of Round 2. Subjects who reach this round pick
either Option A or Option B by clicking anywhere inside the corresponding box. The starting

earnings for the investment activity appear on the left side of each box. “Starting Earnings”



refers to the randomized earnings obtained at the beginning of the experiment, whereas “Cur-
rent Earnings” refers to the latest cumulative earnings. Because the screenshot is from Round
2, the current earnings equal the cumulative earnings at the end of Round 1. After a choice is
made, the updated cumulative earnings are shown on the right side of the box, labelled “New
Earnings.” Dark blue (dark red) indicates that the comparatively high (low) payoff was realised

when the risky investment was chosen.

Decision 2 / 50
Following your previous choices, your current earnings have been adjusted.

Please select an option by clicking your choice below.

Option A
Your
) Previous
Starting Choices Current New
Earnings . Earnings —_p Earnings
$11.71 $12.32 $12.42
Option B
Higher New
Return Earnings
Your $12.87
) Previous
Starting Choices Current
Earnings - Earnings
$11.71 $12.32
New
Lower Earnings
Return $11.99

Figure 2: Screenshot of choice interface

After subjects make their choices, we display the outcome and update their current earnings
accordingly. The figures below show an example sequence: Figure 3a highlights the box after
it is clicked; Figure 3b displays the outcome with the realised payoff; Figure 3c presents the

next-round choice screen with the updated current earnings.

1.1.3 Experimental Variation and Interface — AutolInvest

The other arm, labelled Autolnvest, shares the same consequential variables as Baseline;

the key differences lie in the (inconsequential) path of earnings that lead to those payoffs:

e After each round, participants’ earnings are automatically invested in an index fund,

mirroring a common passive investment strategy in practice.



(a) Clicked

Decision 2/ 50

Please select an option by clicking your choice below.

Option A
Your
Previ
Starting C':Z;z:: Current New
i > i Earnings
$11.71 $12.32 $12.42
Option B
Higher New
Return Earnings
Your $12.87
. Previous
Starting Choices Current
Earnings . Earnings
$11.71 $12.32
New
Lower Earnings
Return $11.99

(b) Outcome

Following your previous choices, your current earnings have been adjusted.

On the previous screen, you selected Option B, which is displayed below. We
randomly drew a ball from the box. The color of the ball is red. Therefore,
your investment results in the lower return.

YYour current earnings will be updated to $11.99.

Higher New
Return Earnings
Your $12.87

R Previous
Starting Choices Current

Earnings - Earnings

$11.71 $12.32
New
Lower Earnings
Return $11.99

Proceed to Next Choice

(c) Next round

Decision 3/ 50

Following your previous choices, your current earnings have been adjusted

Please select an option by clicking your choice below.

Option A
Your
Previ
Starting cr:::z:ss Current New
Earnings i > ing!
$11.71 $11.99 $12.04
Option B
Higher New
Return Earnings
Your $12.49
Previous

Star?ing e Cur(ent
Earnings . Earnings

$11.71 $11.99
New
Lower Earnings
Return $11.61
bmi

Figure 3: Interface sequence in the Baseline condition

(a) Clicked

Decision 2 / 50

Please select an option by clicking your choice below.

Option A
. Index
Starting  p,o Current New
Eamings . Eamings _____,. Earnings
$12.77 $12.50 $12.67
Option B
Higher New
Return Earnings
$13.02
. Index
Starting  p,q  Current
Eamings . Eamings
$12.77 $12.50
New
Lower Earnings
Return $12.14

(b) Outcome

Following market movement, your current earnings from the index fund have been adjusted.

On the previous screen, you selected Option B, which is displayed below. We
randomly drew a ball from the box. The color of the ball is red. Therefore,
your investment results in the lower return.

Your starting earnings in the next round will be $12.14.
The earnings have been automatically placed in the index funds.
Higher New
Return Earnings
$13.02
Starti Index ¢ "
N9 Fund urren
Earnings - Earnings

$12.77 $12.50
New
Lower Earnings
Return $12.14

Proceed to Next Choice

(¢) Next round

Decision 3 /50

Following market movement, your current earnings from the index fund have been adjusted

Please select an option by clicking your choice below.

Option A
Ind
Staring  pui  Gurrent New
Eamings ", Eamings — . Eamings
$12.14 $11.99 $12.14
Option B
Higher New
Return Earnings
/ $12.59
Index
Starting £ Current
Eamings — . Eamings
$12.14 $11.99
New
Lower Eamings
Retum $11.71

Figure 4: Interface sequence in Autolnvest




e The value shown below “Current Earnings” in Figure 4a reflects the realised return from

the index fund.

e Asshown in Figure 4c, the amount displayed under “Starting Earnings” equals the cumu-
lative earnings carried over from the previous round’s choice. Thus, “Starting Earnings”
S; vary across rounds in Autolnvest, whereas in Baseline they remain fixed at the initial

balance (S; = 5).

e “Current Earnings” in round t equal the payoff of the safe option in that round plus
an independent shock ¢;, where ¢ ~ N(0,0.2%). Under this data-generating process,
current earnings are inconsequential and do not affect the path of earnings accumulation

compared to Baseline.

1.2 Theoretical Analysis

1.2.1 Assumptions and Experimental Variations

Round 1 Round 2
Round 1 N

Safe _ o . CHigher o A LA, 4045

Safe S+ A m
Game Lower
G Begins Higher _Saf_e) S A A
ame 2 —=—= S + Ay + 0.45— +Ar+ 11+ Az
Bcéms Higher o1 A, +0.45 Higher o A\ 104544, 4045

Risky] RTk)

S+ A1+Ay —0.43

S+ A1 +045+A) —0.43

—_—
Risky Lower

Safe_ o4 Ay — 04317,

— S+ A1 —-04 PRI
Lower HBhEr o | AL 04317, +0.45

— S+A; — 043
Lower

Hisky L 5+ A1 - 04348, - 0.43

The diagrams above visualise the paths of consequential variables and the round-by-round
variation. These earnings paths are identical in the Baseline and Autolnvest arms. As explained
in Section 1.1.1, a value shock A; is introduced in every round. In each round subjects choose
either the safe investment or the risky investment, represented by the two branches that split at
“Game Begins.” The safe investment has one possible outcome; the risky investment has two,
shown by the bifurcation at “Risky.”

In the Baseline arm, the payoff realised in Round 1 is displayed as “Current Earnings” in

Round 2, whereas in Autolnvest it appears under “Starting Earnings.” The right-hand diagram



shows how the cumulative earnings in Round 2 evolves given the outcome in Round 1. A
new shock A, is then added to both options in Round 2. The safe payoff differs from current
earnings after Round 1 by exactly A,, while the risky payoff may be $0.45 higher or $0.43
lower. Changes since Round 1 are highlighted in red. These shocks provide enough variation
to distinguish starting earnings from current earnings—or from any fixed convex combination
of past payoffs.

Applying the test requires an assumption about how subjects bracket outcomes. Laboratory
evidence (Rabin and Weizsécker, 2009; Ellis and Freeman, 2024) suggests that most subjects use
narrow framing, and such behavior appears across contexts and helps explain key phenomena
in financial decision-making under risk (Benartzi and Thaler, 1995; Read et al., 1999; Rabin
and Thaler, 2001; Barberis et al., 2006). We therefore adopt the narrow-framing assumption.
Even if some subjects look ahead, the test still applies: by design, a shock to A in the current

round shifts future payoff paths in parallel, preserving the required variation.

1.2.2 Testing Contour Lines

One practical difficulty in testing path-dependent reference points is that accumulated earn-
ings also depend on subjects’ past choices. This can be problematic if variation attributed to
a hypothesized referent is actually driven by unobserved risk preferences or by belief updates
(e.g. extrapolation, mean reversion, or learning).

Our experiment identifies variation that can be used to test path-dependent reference de-
pendence in a necessarily dynamic environment. Let E; denote cumulative earnings when the
safe option is chosen in round ¢. Let S be the initial endowment, A; ~ N(0,0.2?) the exogenous

shift in pay-offs in round ¢, and m; the risky return in round ¢:

0.45, if the ball is blue,
my =

—0.43, if the ball is red.

Let C; be a dummy that equals 1 when the risky option is chosen in round ¢. Then

B = S+ (Comi+A) = Y Cmi+ (S+)_4A).

(2
J/ [ J/

i<t i<t—1 i<t
N Vv Vv
endogenous exogenous



When applying our test in round ¢ we use only the exogenous terms:

e Baseline. For testing current earnings as the referent, the outcome variable is S+ ., A;;

current earnings are S+ ) .., ; A;; starting earnings are S.

e Autolnvest. The outcome variable is the same as in Baseline. Current earnings are

(S + i i) + . Starting earnings are S + D icio1 A

Proposition 1, 2, and 3 explain why the contour-line prediction holds when testing (i)
starting earnings in Baseline, (ii) current earnings in Baseline (which is also starting earnings
in Autolnvest), and (iii) current earnings in Autolnvest. Intuitively, if the relevant reference
point is either the initial balance or the most recent balance, shifting that balance alone does
not change subsequent incentives conditional on the distance between the outcome and the

reference point.

Proposition 1 If for any S, S’, Ay, my_1 = (my,ma,...,my_1), Gy = (Cy,Cyy ..., Ciq),
&t—l = (A17A27”'7At—1)7 ]E[Ot|AtaSa ﬁt—17ét—17&t—l] - E[Ct|AtaS/7mt—176t—17ﬁt—1]7 then
the following results hold:

1. For any x, E[C|S, 3", ., A = a] = E[C4|S", 30, Ai = 2.

2. Let 1l(r,0) = E[Cy|S = r, S + > o, A = 0]. If II(r,d) is differentiable, for any r and 0,

ol(rs) _  OII(rs)
o a5 -

Proof. Item 1 is proved by the following observation:

E[CiS, Y Ai=a]=Ep_ 6,5, amelEICAL S i1, Cooy, Bei]]

i<t

=B 005, e EICH A S i1, Gy, Ay

=E[C)|9,) A =]

1<t

Le, is defined in Section 1.1.3.



Given item 1, we have:

6’1_[(7“, (5) m E[C’AS + S, Zigt Az =T — S] - E[CHS, Zigt Az = CL’]

87” s—0 s ==
m E[Ot’S, Zigt Az =T — S] — E[CHS’ Zigt Az — .T]
s—0 s
= - liy -
whereas
Ol(r,8) . E[CS, >, Ai=x+s] —E[Cy]S, Y., A = 1]
= lim = <
8(5 s—0 S
| |

Proposition 2 If for any Ay, S, S, my—1 = (mq, ma, ...,my_1), M;_4, Cry = (Cy,Cyy ..., Ciq),
C_th At—l = (Ala A27 S T) At—l)) &2717 E[Ct|At7 S, ﬁit—h C_;t—b &t—l] - E[Ct|At7 Sla m:ffh C_:t/flv 5:ﬁfl];
then the following results hold:

1. For any x, o', E[Cy|S + > i, 1 Ai =2, A] =E[C|S + >0 Ai = 2!, A].

2. Let 1I(r,0) = E[CHS + > iy =18 + 3y A = 8. If 1(r,6) is differentiable, for any
r and 57 81_[6(7’,5) _ __ oM(r0)

o)

Proof. Item 1 is proved by the following observation:

E[CIS+ Y A=, A =Ep 6 sex ., e EICHA S 77y, Gy, Ary]]

1<t—1
- Emt_lvé’t_lys_i_zigtil A=z [E[Ct|At7 57 mt—la Ct—17 &t—l]]

=E[C|S+ D> Aj=2a/, A

1<t—1

Given the results from Item 1, we have

OIl(r, 6) . E[CS+ iy 1 Ai=r+ 5,80 =0 -1 =8| —E[CS+ >y 1 Ai=1,A =0 7]

r s—0 S
]E[Ct|S + Zi<t—l Al =T, At =0—7r— S] — E[CHS + Zi<t—l Al =T, At =0 — 7']
= m — —
s—0 S
- EBICUS + 2 iy Di=r A =0—r+s| —E[C|S+ >, Ay =71,Ar =0 —7]
o _s~>0 S



whereas

OI(r,0) _ . E[CUS + Y i Ai=r Ay =0 —r+ s8] —E[C|S + Yo Ai =10, =6 — 7]
) 5—0 S

Proposition 3 If for any A, A}, S, S, my_1 = (mq,ma, ...,my_1), M, 1, = (C1,Cyy ... Cyy),
C_Z—lf &t—l = (Ala A?a sy At—l); &2—1; E[Ct|€ta At7 S) mt—la C_;t—h &t—l] = ]E[Ct|€ta AQ? Sla m:t—la CZ—I? &:f—l];
the following results hold:

1. For any x, E[Cile;, S+ 30, Ai = o] = E[Ciler, S+ Y, Ai = 7).

2. Let II(r,0) = E[C|S + > o, Ai = 1,8 + >y Ai + € = 6]. If TI(r,0) is differentiable, for
oll(r,0) _81_[(7",5)'

or 09

any r and 6,

Proof. Item 1 is proved by the following observation:

E[Ct|€t, S + Z Az = ZL‘] = Emtfhétfhs‘f‘zigt Ai:x[E[Ct|€t’ At, S, 77_”2,5_1, C_;t_l, &t—l]]

i<t
= Eﬁt71,6t71,5+2i§t A=z’ [E[Ctleta Ata Sa mtflv thla Atfl]]

=E[Cile,, S+ ) Ai =2

1<t

Given the results from Item 1, we have

oIl (r, 6) . E[Cy|S + Zigt A, =66 =r+s—0] —E[CyS + Zz‘gt A;=0,6=1—10]

r s—0 S

whereas

81_[(7” 5) m ]E[Ct‘s—i— Eigt Al = 5+ S, =T —8— 5] — ]E[Ct’S—‘— Zigt Al = (S, € =T — (S]

5 _SHO S
L EGIS+ Y Av=d e =r—s—0 —E[G|S+ >, A = b, =1 — ]
0 s
o E[CIS+ Y, Ai=0ee=r+5s =0 —E[C|S+ > .., Ai =0,¢s =71 — 0]
= —lim = =
s—0 S



1.2.3 Analyzing Parametric Forms of Reference Dependence

We focus on the status-quo reference point (current earnings) in Baseline. Analysis of other
candidate reference points is similar, because each is a pointwise benchmark determined by the
path leading up to the current choice set.

Let Go(O) denote the safe option, which yields the sure payoff O. Let G;(O + k,O — k)
denote the risky option, which increases earnings by k if the ball is blue and decreases them by
k if the ball is red.

Define the reference-dependent value function

—“Ap(—x), x<0,
plx) = Pl e

where ¢ : [0,00) — R satisfies ¢(0) = 0, ¢'(xz) > 0 and ¢"(x) < 0. The parameter A captures

loss attitude: A > 1 implies loss aversion, A = 1 loss neutrality.

Proposition 4 Let CE(-) be the certainty equivalent of an option and let the reference point
be r. If either (i) A =1 and p(-) exhibits diminishing sensitivity, or (ii) XA > 1 and u(-) exhibits

constant or diminishing sensitivity, then
C’E(gl(O + kO — E)) -0

is decreasing in O for O € [r —0.49k, r +0.51k —0.49 /ﬂ :

Proof. The utility of Gi(O + k,0 — k) is: 49%u(O — 7 + k) + 51%u(k — O + r). Since
O —r < —49%k + 51%k, we have

49%p(0 — r + k) + 51%u(0 — r — k) < 49%u(—49%k + 51%k + k) + 51%\u(—49%k + 51%k — k)

= 49%u(51%(k + k)) + 51%u(—49%(k + k)) = 49%p(51% (k + k)) — 51%Ap(49%(k + k))

51%
49%

< 49%—=0(49%(k + k)) — 51%Ap(49%(k + k)) < 0

Therefore CE(G1(O + k,O — k)) < r. Thanks to constant/ diminishing sensitivity, we have

Oulz —1) | . > M|
o7 @=CE(G1(0+k,0—k)) = o7 +=0—k

10



When O —r > —g , below we show by contradiction that

oz — 1) oz — 1)
Tb:omgmo%,o-g)) > T|x:o+k

Suppose this is not the case, then due to diminishing sensitivity, for any O — k < z7 <

CE(Gi1(O +k,0 —k)) <2t <O+ k we have

alﬁ<x_r)| 7<8,LL(LC—7’)| N
ox = ox =

By the definition of certainty equivalent

51%[u(CE(G1(0 + k,0 = k)) = 1) = (O — k —1)] = 49%[u(O + k — ) = p(CE(G1(O + k, 0 — k)) = 7)]
R

r=CE(G1(0O+k,0—k)) o =0+ _

dx
z=0—k Ox =CE(G1(0+k,0—k)) O

= 51%(CE(G(O+k,0 —k)) — O +k) > 49%(0 + k — CE(G,(O +k,0 — k)))
< CE(G(O+k,0—k)) >0 —51%k +49%k > r — 51%k
= |CE(G(O+k, 0 —k)) —r| <51%k < 51%k < |0 +k — |

Diminishing sensitivity implies that W‘mzCE(Ql(O +E,0—k) > O (gx_r) |s—0+7, which leads to

contradiction. As pu(.) is monotone, we have

ICE(Gi(O+k0—k)  ICEG(O+kO-k)) IuCEG(O+kO—k)~—r)
90 Ou(CE(G (O + k,0 —k)) — 1) o0
_ I(CE(Gi(0+k,0—k)))
T Ou(CE(G(O+k,O0—k)—r)
_ 49%/(0 + k—71)+51%u/ (0 —k—r) -1
H(CE(GI(O+k,O—k))—r) B

(49%u/' (O + k — ) +51%p' (O — k —r))

Proposition 4 implies that the propensity to take risk decreases as the sure payment O
approaches the reference point r from below. Figure 5 shows that, for common parametric forms,
this decline extends well beyond the region specified in the proposition. The derivation and
simulation echo the usual intuition from the disposition-effect literature: diminishing sensitivity

can explain greater risk taking in the presence of prior investment losses.
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Figure 5: Certainty-equivalent difference in the investment game

Investment Game - Status Quo: G+(0-k,0+k) vs. Go(O)
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Note: The figure illustrates Proposition 4. It plots CE(G1) — CE(Go) against O — r. The parameter A measures loss aversion.
“Diminishing sensitivity” uses a power utility with exponent 0.7. The pink area marks the loss region.

1.3 Data Analysis

Variables Utilized As outlined in Section 1.2.2, reference dependence implies that we can
apply a contour-line test using the total accumulated shocks. We retain the original notation

and restate below the variables used for each round #¢:

e (; is the dependent variable, equal to 1 if the risky option is selected.
e In Baseline:

— the exogenous component of the outcome is (S + >, A));
— for current earnings, it is (S + >, As);

— for starting earnings, it is simply S.
e In Autolnvest:

— the exogenous component of the outcome remains (S + > ,, A;);
— for current earnings, it is (S + Y, ., A; + &);

— for starting earnings, it is (S + > o, Ai).
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1.3.1 Average Derivative Test

Propositions 1, 2 and 3 show that the contour-line prediction holds: at any value the shocks
may take, the marginal effect of shocks to outcomes should be the additive inverse of the
marginal effect of shocks to the referent under test. This theoretical result corresponds to the
average marginal effect (average derivative) of a regressor in econometrics.

The Stata command npregress kernel fits the conditional choice probability non-parametrically
with an Epanechnikov kernel, selects the bandwidth that minimizes integrated mean-squared
error, and reports the average marginal effect of each regressor together with a cluster-bootstrap
2

covariance matrix.

Regressors for each treatment are:

e Baseline, round t (¢t > 2). Dependent variable: C;. Regressors: (a) shocks to the sure
payment S+, A;; (b) shocks to starting earnings S; (c) shocks to current earnings

S+ > .1 Ai. Denote the corresponding average marginal effects by B i B

ac . Ra Qb _ Qa Ac _
and BBaseline‘ Test: BBaseline + BBaseline =0 and BBaseline + BBaseline =0.

e Autolnvest, round t (t > 2). Dependent variable: C;. Regressors: (a) shocks to the sure
payment S+ ., A;; (b) shocks to starting earnings S+ ., | A; (c) shocks to current
earnings S + Zigt A; + €. Denote the effects by Bf}mtomvest, Bfguto[nmt and Bﬁmomvest.

. Ra ab _ Qa Qe _
Test: ﬂAutoIn'uest + BAutoInvest = 0 and 5Auto[7west + BAutoInvest =0.

Failing to reject a null means we cannot rule out that the average marginal effect of shocks
to outcomes equals the additive inverse of the effect for the candidate referent. If we fail to
reject any of the null hypotheses, we then test whether each individual marginal effect differs
from zero. For example, if Bgasehne + Bgaselme = 0 is not rejected, we next test B%aseline =0 and
Bgmlme = 0 separately. In this example, rejecting B%aseline =0 and Bgaselme = 0 strengthens
the case that current earnings influence behavior in a non-trivial reference-dependent way;
otherwise, the variable may have no effect or a non-monotonic effect, which will be examined

in Sections 1.3.2 and 1.3.3.

2«Average” refers to the sample average of the partial derivatives evaluated at each observation. The com-
mand is available in Stata 15 or later. See Li et al. (2003); Cattaneo and Jansson (2018) for theoretical
background.
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If both nulls are rejected for a treatment arm, neither hypothesized referent passes the test.

We then quantify the deviation from the null with

ha ab ha ac ha Qb Qa ac
BBaseline + ﬁBaseline ﬁBaseline + ﬁBaseline ﬁAutolnvest + ﬁAutoInvest BAutoInvest + ﬁAutoInvest

A A ) A ~ ) ~ ~ 3 ~ ~ .
|ﬁ%aseline ’ + ’B%aseline | |ﬁ%aseline ’ + ’B%aseline ’ |ﬁf\ut01nvest ‘ + ‘5zlzlutolnvest ‘ |ﬁ§§utolnvest | + |ﬁzc4utolnvest ‘

Each ratio lies between —1 and 1; values in [—0.2, 0.2] are labelled approximately reference dependent.

Regardless of whether the hypotheses is rejected, the average derivatives identify coefficients
in a single-index model (Powell et al., 1989). We therefore construct a single-index candidate
and apply the specification test of Fan and Li (1996) in Section 1.3.3. We choose the referent

whose ratio above is closest to zero. For example, if in AutoInvest the selected ratio is

Qa Qb
5Autolnvest + ﬁAutoInvest

= ~ )
| Bilutolm)est | + | /Bﬁlutolnvest |

we test the Single index Bzutolnvest(s + Zigt Al) + Bgutolnvest(s + Zigt—l Al) If instead the

chosen ratio is

Qa Qe
BAutoIm)est + ﬁAutolnvest

= ~ )
| Biutolrwest | + | ﬂzcélutolnvest |

we test

g(BZutolnvest(S + Z Al) + Bilutolm)est(s + Z AZ + Et)) .

i<t i<t
1.3.2 Graphical Analysis

We will present two graphical diagnostics that provide an intuitive illustration of the em-

pirical results:

1. Contour-line plots. We estimate the conditional choice probability with npregress
kernel as in Section 1.3.1, but include only two regressors: the cumulative shocks to the
outcome and the cumulative shocks to the candidate reference point. The shocks to the
outcome, S + Zz‘gt A;, are plotted on the y-axis. The shocks to the candidate reference
point are plotted on the z-axis: S+3,_, | A; (current earnings) and S (starting earnings)
in Baseline; S+ .., A; + ¢ (current earnings) and S+ >, | A; (starting earnings)
in Autolnvest. Thus, each treatment arm yields two contour-line plots, one for each

candidate reference point. We render the fitted surface with the Stata command twoway
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contour. Propositions 1-3 imply that, if the variable on the x-axis is indeed the reference

point, the contour lines should align along a 45-degree line.

2. Choice probability curves. We estimate the conditional choice probability as a func-
tion of the difference between the shocks to the outcome and those to the candidate refer-
ence point using twoway lpolyci with its default kernel (epanechnikov) and bandwidth
(which minimizes the conditional weighted mean integrated squared error). Proposition 4
predicts that, under the correct reference point, the curve should be weakly decreasing
in the loss region near zero. As illustrated in Figure 5, with diminishing sensitivity the
probability of choosing the risky option generally falls, although non-monotonic behavior

is possible when utility is linear in gains and losses.

1.3.3 Fan and Li (1996) Specification Test

As noted in Section 1.3.1, the specification to be tested depends on the outcome of the

average-derivative test:

o If at least one candidate referent r passes the average-derivative test, we conduct the
standard specification test for that candidate: there exists a non-constant function g(-)

such that
E[(Jt | A,f] _ g<A —f) .

e If no candidate passes and a single referent is chosen by the criterion in Section 1.3.1, we
apply an estimation-adjusted specification test: there exists a non-constant function g(-)

such that

where B x and B,: are the average-derivative estimates from Section 1.3.1.

Details specific to this experiment are set out below; general procedures appear in Section

4.2.

Sample selection In the Baseline arm, current and starting earnings coincide in Round 1

and only begin to diverge as shocks A; accumulate over time. Because the specification test
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permits only one candidate referent at a time, we plan to restrict the analysis to Rounds 21-50

to ensure sufficient statistical separation between shocks to current and starting earnings.

Bandwidth scale parameters k1, (unrestricted two—dimensional nonparametric func-

tion in both outcome and hypothesized-referent dimensions)
e Baseline — current earnings: 1.5 x sd(4A;)
e Baseline — starting earnings: 1.5 x sd (Zigt Ai>
e Autolnvest — current earnings: 1.5 x sd(e;)

o Autolnvest — starting earnings: 1.5 x sd(4;)

Bandwidth scale parameters x;; and k, (restricted single-index function)
e Baseline — current earnings: 1.5 X sd(4;)
e Baseline — starting earnings: 1.5 X sd (Zigt Ai>
o Autolnvest — current earnings: 1.5 x sd(e;)
o Autolnvest — starting earnings: 1.5 x sd(A;)

Hence, for any experimental arm-referent combination, the three scale parameters k11, K12,

and k9 are all set to
1.5 x sd(cumulative shocks to the outcome — cumulative shocks to the referent).

This bandwidth choice is calibrated to accommodate the elliptical support of the joint distri-
bution of outcome and referent shocks.
1.3.4 Heterogeneity Analysis

The idea behind the heterogeneity analysis is that, when outcomes are shifted, reference-
independent behavior with locally linear utility implies a constant level of risk taking. By

contrast, Proposition 4 predicts that the probability of choosing the risky option declines over a
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sizable range as the difference (shock to outcome—shock to referent) increases. To capture this,
each subject’s choices are regressed on that difference, treating current earnings and starting

earnings separately within each treatment arm.

Baseline arm. For each subject we run

Cy = 5S<S+ZA,-—S> + ,BC<S+ZAi—(S+ > Ai)> + w,

i<t i<t i<t—1

where u; is the regression disturbance.

AutoInvest arm. For each subject we run

Cy = 6S<S+ZAZ- —(S+ > Ai)) + 50<5+2Ai— (S+ZAi+et)) + uy.
i<t i<t—1 i<t i<t
Here ¢, is the index-fund shock defined earlier, while u; again denotes the regression disturbance.

Classification rule. Building on Proposition 4 and the tests in Sections 1.3.1, 1.3.2 and

1.3.3, subjects are classified separately within the Baseline and Autolnvest arms:

e If only current earnings are favored, a subject is labelled “reference dependent” when

Bc ke < —5%; otherwise “not reference dependent.”

e If only starting earnings are favored, a subject is labelled “reference dependent” when

Bs kg < —5%; otherwise “not reference dependent.”

e If both or neither variables are favored, we compare the two scaled effects: a subject
is “reference dependent regarding starting earnings” when (s kg < min{—5%, B¢ kc};
“reference dependent regarding current earnings” when S¢ ke < min{—5%, B kg}; oth-

erwise “not reference dependent.”

ks and ko denote the sample standard deviations of the respective regressors for that subject.
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2 Analysis Plan of Effort Task

2.1 Experimental Design

In this experiment, subjects choose between a lower workload with lower lottery payoffs and
a higher workload with higher lottery payoffs. At the start they complete two CAPTCHA-style
transcription tasks involving blurry Greek letters, following the format of Augenblick et al.
(2015). Figure 6 shows the interface.

Subjects are then presented with 50 binary choices. In each choice they decide between (i)
a lottery requiring no additional transcription, and (ii) a more favorable lottery that requires
further transcription tasks. Each lottery has two outcomes. One outcome is identical in both
lotteries—hereafter the common payment. The other outcome is higher in the lottery that
requires extra tasks—hereafter the effort payment. (These labels are used only in the analysis,
not in the experiment.) Figure 7 illustrates the three attributes displayed for each option: (a)
the extra number of tasks, (b) the common payment, (c) the effort payment. The red amount
is the payoff if the coin flip returns Heads, and the blue amount is the payoff if it returns Tails;
which payment (common or effort) is shown in each color is randomized across questions.

Across the 50 questions there are five possible extra task counts: 1, 3, 5, 7, and 10. Each

count appears in ten questions. Let r denote the common payment in a question, with
r =, + 2, x, ~ U[6.5,13.5], z, ~ N(0,0.25%).

Let A denote the effort payment in the no-extra-task option, and A + b the effort payment in

the extra-task option, where
A =1p+ 25, za ~ U[6.5,10], za ~ N(0,0.25%).

Within each task count (ten questions) the increment b takes the values 0.41,1.23,2.05,2.87,

and 4.10, each value appearing in two questions. Hence the triple (A,r,b) is independently

randomised across questions and subjects, and is independent of the extra number of tasks.
One of the 50 choices is selected for payment. If the subject chose the no-task option, a die

is rolled and the payment is revealed immediately. If the subject chose the extra-task option,
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Figure 6: Example screenshot of effort task

You have completed 0 / 2 transcription tasks.
You will be able to choose your monetary reward after completing all 2 tasks.

“"Submit" button is activated only if most letters have been transcribed correctly.

Occasional errors are fine. If you are unsure about a figure, please make an educated guess or assumption
to the best of your ability. To delete buttons that are selected incorrectly, position your cursor to the right
of the letter and then press the backspace or delete key on your keyboard.

oraaa A y1 856 yayrdv 1€y ot x afS 0y

| Type here by clicking the buttons with Greek letters below... I

CJE)HEEEE]

Figure 7: Example screenshot of decisions

Decision 1/50
Please select an option by clicking your choice at the bottom of the page.

This is the lottery you would receive if you do not complete any more

No More
Tasks

| More Tasks

Do 7 §

Tails $12.83

Would you like to complete more task(s)?

[ Yes, Do 7 More Tasks ] [ No, Don't Do More Tasks ]

Please note that if you opt to do more tasks, you will not receive
payment until the extra tasks are completed.
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the additional transcription must be completed before payment is revealed.

2.2 Theoretical Analysis
2.2.1 Set-ups and Assumptions

Expectation-based reference dependence (Ké&szegi and Rabin, 2006) Decision mak-

ers’ utility from performing e extra tasks in return for lottery L is

[ware + [[ute -y dpets) arew) - o

where F is the distribution of £ and F the distribution of the reference lottery £’. The

reference-dependent gain—loss utility is

—Anely —x), z—y<0,
plz —y) =
nelx—y), x—y=0,
with ¢ : [0,00) — R twice differentiable, p(0) = 0, ¢'(x) > 0 and ¢"(z) < 0 for > 0. The
parameter A > 0 captures loss attitude (A > 1: loss aversion, A < 1: gain seeking); n weights
gain—loss utility relative to direct utility. c(e) is the effort-cost function.

To streamline notation:
e 1) is retained for consistency but not discussed separately.

e Because the lotteries’ payoff distributions do not depend on e, we write the effort cost

simply as a constant ¢ below.

Besides personal equilibrium (PE) and preferred personal equilibrium (PPE) from (K6szegi
and Rabin, 2006), we also consider choice-acclimating personal equilibrium (CPE) (Készegi
and Rabin, 2007), which is widely applied in real-effort settings (Abeler et al., 2011; Campos-
Mercade et al., 2024).

Notation

e Stopping yields the lottery S(A,r) = (%, A; %, 7").

20



e Working more yields W(A,r,b,¢) = (%, A+ 0b; %, 7") at cost c.
As detailed in Section 2.1, A, r,b, ¢ are randomised across questions. Each subject encounters

the same (b, ¢) set, and A, r, b, ¢ are jointly independent.

Assumption: narrow bracketing We assume subjects evaluate each choice in isolation
instead of combining all 50 choices into one meta money-plus-effort lottery. Pooling would
attenuate responses to the common payment r and the effort payment A. For instance, if
the round-t reference point were the “lagged expectation”—the distribution of pay-offs from
the previous ¢t — 1 rounds—then r would have zero direct effect because the reference is in-
dependent of the current choice set. Even if the current pay-off were immediately folded into
that expectation, its weight would quickly diminish (e.g. below 10% after ten rounds), and the
marginal-utility change from A to A + b would be smoothed away.

2.2.2 Choice-Acclimating Personal Equilibrium (CPE)
The CPE utility of S(A,r) is

1 1 1—A
UCPE(S(A, ’I")) = 5’/“ + §A + HT QO(|A — 7’|)

The CPE utility of W(A,r,b,¢) is

1 1 1 1—A
UCPE(W(A,T, b, C)) = 57‘—1— §A—|- §b+nT @(’A‘Fb—ﬂ) — C.

A decision maker prefers to work more under CPE iff
1 1—X
UCPE(W(A,T, b, c)) > UCPE(S(A,T)) = §b—c+nT (@(\A—l—b—ﬂ) —@(\A—TD) > 0.

Figure 8 provides numerical examples of the utility difference between stopping and working
more. We set the effort cost to $1. Assuming linear consumption utility for small stakes (slope

normalised to 1), the utility difference equals the certainty-equivalent difference.

Proposition 5 (Contour-line prediction) If

UCPE<W(A, r, b, C)) Z UCPE<S(A, T)),
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Effort Task - CPE: W(r,A+b,c) vs. S(r,A)

$1)

0.5
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\

A=2, Diminishing ~ \ » mmem— e — e

A=0.5, Constant

Certainty Equivalent Difference (Effort Cost

-0.5
7

T
-3 -b=-2.05 0 1
A-r (b=2.05, c=1)

Figure 8: Visualization of Proposition 6

Note: The figure plots Mcpg(x) for b = 2.05 and ¢ = 1. “Constant” refers to constant sensitivity; “Diminishing” to diminishing
sensitivity. A denotes loss-aversion strength. For diminishing sensitivity we use a power utility with exponent 0.7.

then for every real x,
Ucpe(W(A +z,7+2,b,¢)) > Ucpp(S(A+z,r+ 2)).

Proof. Adding the same constant x to both monetary outcomes of a lottery shifts each payoff

up by x in every state. Hence

UCPE(W(A—i—x,r—i—x, b, c)) = :c—l—UCpE(W(A, r,b, c)), UCpE(S(A—l—x, r—i—:t:)) = x—l—UcpE(S(A, r))
Subtracting the common z from both sides yields

x4+ Ucpp(W(A,r,b,¢)) > x4+ Ucppe(S(A, 1)) <= Ucpe(W(A,r,b,¢)) > Ucpp(S(A, 7)),

which is exactly the initial assumption. Therefore the inequality is preserved for any x. =

Proposition 6 (Shape of propensity curve) Let

MCPE(I) = UCPE(W(T +x,r,b, C)) — UCPE(S(T +x, T))
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Then:

1. If \ > 1, Mcpg(z) increases (is flat) on (—o0o,0] under diminishing (constant) sensitiv-
ity, decreases on [—b,0|, and increases—flattening out under diminishing sensitivity—on

0, 00).

2. If N <1, Mcpge(x) decreases (is flat) on (—oo, 0] under diminishing (constant) sensitiv-
ity, increases on [—b,0], and decreases—flattening out under diminishing sensitivity—on

[0, 00).
3. For any A # 1, y € [=b,0] and = & [=b,0], [Mgpp(y)| > [Mepp(z)|.
Proof. We have Mcpp(z) = 2b — ¢+ 022 (o(|z + b]) — ¢(|z])). Consider three ranges for a:

e v < —b: With constant sensitivity ¢(|z + b|) — ¢(]z|) is constant; with diminishing

sensitivity it is negative and decreasing.
o —b<ux<0: p(|Jz+b|) — ¢(|z]) is increasing.

e = > (: With constant sensitivity it is constant; with diminishing sensitivity it is positive,

decreasing, and flattens out.

The sign of M pg(x) therefore depends on (1 — ). For z > 0 and —b < y < 0,

(Mepp)| =& 0+y) +¢'(-y) > JO+z)— () = [Mepg(r)].

A similar inequality holds when z < —b. =
Proposition 6 shows that Mcpg(x) flattens when A is far from r and is most sensitive for

A —r € [-b,0]. Figure 8 illustrates these patterns numerically.

2.2.3 Preferred Personal Equilibrium (PPE) - Working More

There are two key differences between PPE and CPE:

1. PPE is defined at the choice-set level. In what follows we assume the equilibrium is

defined at the question level.
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2. Because PPE involves a two-step decision rule, the link between the utility difference of
two options and choice probability is less direct. In this subsection we therefore focus only
on the condition under which working more, W(A,r,b,c), constitutes a PPE for given

(u, A, 7, b, ¢), without mapping utility differences to probabilities.

The definition of PPE is based on the notion of personal equilibrium (PE).
Working more is a PE iff

UpeW(A,1,b,)\W(A,1,b,¢)) > Upp(S(A, 7)) W(A,1,b,¢)) <~

1 1 1 1
—bH — — — — = — — —ul— >
2b c—|—4,u(A r+b) 4M(A T) 4,u( b) >0

Let Pyy be the set of (A, 7, b, ¢, u) for which working more is a PE.
Stopping is not a PE iff

UpeW(A,r,b,¢)|S(A, 1)) > Upr(S(A,1)|S(A, 1)) —

1 1 1 1
—b—c+-puA—r+b) ——-pulA—r)—-p >

Let us use Ps to denote the set of (A, r, b, ¢, ) such that stopping is not a PE.
Finally, let us use P to denote the set of (A, r, b, ¢, 1) such that working more is a CPE.
Let P = {(A,r,b, ¢, ;n)|Working more is PPE}, then by definition

'P:Pyvﬂ(PsU'Pc)

It becomes obvious that the contour line prediction holds:

Proposition 7 (Contour-line prediction) If (A,r,b,c,u) € P, then for any x, (A+x,r+

x,b,e,pu) €P.

Proof. Based on the proof of Proposition 5, as well as the observation that (A,r,b,c,u) €

Ps <— (A+uxz,r+x,bc,p) € Psand (A,r,b,c,pu) € Pe < (A+x,r+x,bc,1u) € Pe,

the prediction holds. m
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To characterize the propensity to work more, define X (x) = {(c, p)|(r + z,r,b,¢c, u) € P}.
Here (¢, ) can be interpreted as subject-level heterogeneity or choice-level decision noise. A
larger X'(x) means that working more is more likely to be PPE.

With conventional functional forms, the predictions from PPE is similar to that of CPE:

Proposition 8 (Shape of the A —r curve) X(z) decreases in [—%,0] if all elements in

the set of u satisfy one of the following conditions:
1. A > 1.
2. X =1 and diminishing sensitivity.

Proof.
Working more is a PE iff

UpgW(r +z,r,b,c)W(r+z,r,b,¢)) > Upp(S(r+x,r))\W(r +x,r,b,c)) <

1 1 1 1
“h—cH+ = S — —u(=b) >
50—+ qule+b) = Ju(z) — 2u(=b) 20

Stopping is not a PE iff

UpeW(r +x,r,b,¢)|S(r+z,7))) > Upp(S(r+z,7))|S(r+z,1)) <~

1 1 1 1
b — — R - — >
2b c+4u(a:+b) 4u(az) 4u(b) >0

When z € [-2,0], p(z + b) — pu(x) decreases with either diminishing sensitivity or loss
aversion. Therefore, for any given r and b, both Py, and Ps decreases in x. From Proposition
6 we also know that P¢ decreases in x. Therefore X' (z) decreases.

]

Proposition 8 indicates that the propensity to work more falls most steeply when A —r €

[—b, 0], mirroring the CPE result.

2.2.4 Preferred Personal Equilibrium (PPE) — Stopping

The derivation mirrors the previous subsection, except that all inequality directions are

reversed; consequently, the contour-line prediction still holds.
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Stopping is a PE iff

Ups(W(A,7,b,¢) | S(A, 1)) < Up(S(A,7) | S(A, 7))

1 1 1 1
b — — — — — — — — < 0.
= 2b c + 4M(A r+b) 4M(A T) 4,u(b) <0

Working more fails to be a PE iff

UpE(W(A,r, b,c) | W(A,r, b, c)) < UpE(S(A,r) | W(A, 7, b, c))

1 1 1 1
Sh—c + Sp(A— — (A =) — =pu(=b) < 0.
= 2b c + 4,u( r+b) 4u( r) 4u( b) <0

Y

Let PP, PEP, and PP denote the analogues of Py, Ps, and P¢ for the stopping option.
From Proposition 8, each of these sets increases in A — r over the interval [—b,0]. Thus, when
A —r rises within [—b, 0], the condition for choosing W(A, r, b, ¢) becomes progressively tighter,

leading to qualitatively identical predictions for behavior.

2.2.5 Bell-Loomes—Sugden (BLS)

Although originally not intended for the domain of labour supply, we extend the model
of disappointment aversion (Bell, 1985; Loomes and Sugden, 1986). We adopt their utility
formulation for the lottery and assume that effort cost is additively separable. With disap-

pointment—elation utility u(z) (setting n = 1), the BLS utility of S(A,r) is

Unts(S(A,1)) = 5+ 58+ 2u(b(r — &) + Su((A — 7).

The BLS utility of W(A, r,b,¢) is

1 1 1
UBLs(W(A,T, b, C)) =—r+-A+ -

Db tas by LG a-n) ¢ Luda o) e

2

Proposition 9 (Contour-line prediction) If UBLS(W(A,T, b, c)) > UBLS(S(A,r)), then
for any x,

UBL5<W(A+ZL',T+ZL',Z), C)) > UBLs(S(A+$,T+$)).

Proof. Because UBLS(W(A + x,r + x,b, c)) = x+ UBLs(W(A,T, b, c)) and UBLS(S(A +
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T, r+ x)) =x+ UBLS(S(A,T)), the stated inequality is equivalent to UBLS(W(A,T, b, c)) >
Uprs(S(A,7)). =
Let
M(x) = UBLs(W(T +x,7,0b, c)) - UBLS(S(T +x, r))

Proposition 10 (Shape of the A — r curve) For x € [—b,0]:
1. If A > 1, then M(x) decreases.

2. If A\ =1, then M(x) is constant.

Proof. Within z € [, 0],

1 1—A

M(z) = §b + —5— [e(3(z +b)) ——12)].

Because ¢ is increasing and, under diminishing sensitivity, concave:
o AL(z+1b)) — ¢(—3x) rises with = on [—b,0];
e thus, when A > 1, the coefficient 1 — A < 0 implies M (x) decreases;

e when A = 1, the term in brackets is multiplied by zero, so M(z) is constant.

Proposition 10 therefore predicts that, under standard parameter values, the marginal

propensity to work more falls whenever —b < A — r < 0.

2.2.6 Common Payment as Referent

Assume monetary utility is reference-dependent: a payoff o yields ¢(o—r), where ¢(-) shares
the form of p(-) with n = 1.
1 1
UFP(S(A,T‘)) = 5 ¢<A — 7“), UFP(W(A, T, b, C)) = 5 qb(A + b— 7“) — C.

Hence W(A, r, b, c) is preferred to S(A, r) iff

%gzﬁ(Aer—r)—%ng(A—r)—c > 0.
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Proposition 11 (Contour-line prediction) If Upp(W(A,r,b,c)) > Upp(S(A, 1)), then for
any x,

UFP(W(A +ax,7r+x,b, c)) > UFP(S(A +ax,r +:c))

Proof. Because Upp(W(A+z,r+1,b,¢)) = 2+ Upp(W(A, r,b,¢)) and Upp(S(A+z,r+1)) =
x4+ Up p(S (A, r)), the inequality with offset = holds exactly when the original inequality does.

2.3 Data Analysis
2.3.1 Average Derivative Test

Propositions 5, 7, 9 and 11 show that various forms of expectation-based formulations imply
(A, r) = EW(A,r,b,¢) = S(A,r) | Ayr] = g(A—r).

Hence OII(A,r)/0A = —OII(A,r)/0r. As in Section 1.3.1, the Stata command npregress
kernel fits the conditional choice probability non-parametrically with an Epanechnikov ker-
nel, selects the bandwidth that minimises integrated mean-squared error and reports average
marginal effects together with a cluster-bootstrap covariance matrix. Each observation is a
subject’s response to one question. The dependent variable indicates W(A,r, b, ¢) = S(A,r);
the regressors are A and r. Let BA and BT denote their average marginal effects. We test the

null hypothesis BA + BT = 0:

e If the null is not rejected, we test whether fa and BAT individually differ from zero. Sig-
nificant effects strengthen the interpretation that failure to reject indicates reference de-
pendence; insignificant effects may reflect no influence or a non-monotonic response, to

be examined in Sections 2.3.2 and 2.3.3.

e If the null is rejected, none of the explored expectation-based models (CPE, PPE for
both options, BLS, common-payment reference) explains the aggregate behavior. We
then evaluate A .

Ba + By
1Bal + 18]
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which lies in [—1,1] as the denominator is positive. Values between —0.2 and 0.2 are

labelled approximately reference dependent. The estimated weights are used to test the

single-index specification g(BAA + Brr) in Section 2.3.3.

2.3.2 Graphical Analysis

The graphical diagnostics mirror those in Section 1.3.2:

1. Contour-line plot. Using npregress kernel with regressors A and r (as in Sec-
tion 2.3.1), we estimate the conditional choice probability and graph its level sets with
twoway contour. A is placed on the y-axis and r on the z-axis. Propositions 5, 7, 9,
and 11 predict that, if r is the true reference point, the contour lines should appear as

diagonals with slope 1 (i.e. 45-degree lines).

2. Choice probability curve. We plot the estimated conditional choice probability against
A —r using twoway lpolyci with its default bandwidth (which minimises the conditional
weighted mean integrated squared error). Propositions 6, 8, and 10 predict that, under
standard functional forms, the propensity to choose the higher-workload option decreases

as A — r increases.

2.3.3 Fan and Li (1996) Specification Test

Following the discussion in Section 2.3.1, the specification to be tested depends on the

outcome of the average-derivative test:

e If the hypothesis BA + BT = 0 is not rejected, we conduct the standard specification test

(reference-dependent formulation): there exists a non-constant function g(-) such that

EW(A,r,b,c) = S(A,r) | Ar] = g(A —r).

e If the hypothesis BA + Br = 0 is rejected, we apply an estimation-adjusted specification

test: there exists a non-constant function g(-) such that
EDW(A,r.b.c) = S(A, 1) | A1) = g(Bald + i),
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where BA and BT are the average-derivative estimates from Section 2.3.1.

Details specific to this experiment are set out below. The general procedure is given in

Section 4.2.

Bandwidth scale parameters k1, (for the unrestricted two-dimensional nonparamet-

ric function)
e For the A dimension: bandwidth scale = 1.5 x sd(A).

e For the r dimension: bandwidth scale = 1.5 x sd(r).

Bandwidth scale parameters x;; and r, (for the restricted single-index function)

e Single-index dimension A — r: bandwidth scale = 1.5 x sd(A — 7).

2.3.4 Heterogeneity Analysis

Figure 9: Numerical example of responses to r and A

Effort Task - CPE: W(r,A+b,c) vs. S(r,A) Effort Task - CPE: W(r,A+b,c) vs. S(r,A)
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Note: Each panel shows the distribution of responses to the common payment r and the effort payment A, respectively. The pink
region marks A < r < A 4+ b. The parameter A measures loss aversion (A > 1) or gain seeking (A < 1). The curve labelled

“diminishing sensitivity” is generated by a power reference-dependent utility function with exponent 0.7.

The common intuition behind expectation-based reference dependence is that choices de-

pend on comparing pairs of monetary outcomes. This comparison implies that the response to
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a shock in the common payment r should be the exact opposite of the response to a shock in
the effort payment A, as illustrated in Figure 9.
These comparative statics allow us to test expectation-based reference dependence at the

individual level. For each subject we estimate

IW(A,7,b,¢) = S(A, 7)) = Brr + Ba A+,

where 3, and BA are the individual OLS estimates. We abbreviate expectation-based refer-

ence dependence as EBRD.
o If BT > 5%, classify subjects as follows:

— Those with BA < 0 are “expectation-based loss-averse”.

— Those with BA > 0 are “non-EBRD”.
o If B, < —5%, classify subjects as follows:

— Those with ﬂAA > () are “expectation-based gain-seeking”.

— Those with BA < 0 are “non-EBRD”.

3 Analysis Plan of Binary Lottery Choice

3.1 Experimental Design

The third experiment has two arms: Plain and Contingent. Both arms present mathemati-
cally identical lottery choices. In Plain, each lottery is simple—the outcome is determined solely
by a die roll. In Contingent, one lottery remains simple while the other becomes compound:
the simple option’s risk is resolved by a die roll, whereas the compound option’s risk is resolved
first by a die roll and, in certain cases, by an additional coin flip. This arm is called Contingent
because the design separates contingencies in which the coin flip is inconsequential (a common

consequence) from those in which flipping the coin affects payoffs.

3.1.1 Basic Setup
Subjects face 50 binary choices between two lotteries.
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e A two-outcome lottery, Lo(A, ), pays r with probability 1/3 and A with probability 2/3.

e A three-outcome lottery, L3(A, r, k, k), pays r with probability 1/3, A—k with probability
1/3, and A + k with probability 1/3.

Data-generating process.

e Choices 1-40.
A =5sp+up, sa~U[7T.5,12.5], ua ~ N(0,0.25%);

r=s,+u., s ~U[5514.5], u, ~ N(0,0.25%).

For choice i (1 <7 < 40):

2 if ¢ is odd,

(B
Il

k=(08+[(i—1)/5]-0.1) k.

1.5 if 7 is even,

note that |z] denotes the greatest integer less than or equal to x.
e Choices 41-50. The parameters are fixed as

A = (13,13,10,10,10.5,10.5, 13.5,13.5, 10, 10),

7= (8,11,5,8,6,9,9,12, 12, 15),

|Zsy
Il

(—2,-2,-2,-2,-1.5,-1.5,—1.5, = 1.5, -2, —2),

k=(2,222151515,15,22),

where the parameters for choice i (41 < i < 50) are taken from the (i — 40)-th element of

each vector.

The 50 choices are shown in random order to every subject; the numbering above is used

only for analysis and does not affect the display sequence.
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3.1.2 Interface and Decision - Plain

The risk is generated by a fair die. For L£5(A,r), it pays A if the die is one, two, five, or
six; it pays r if the die is three or four. For £3(A,r, k, k), it pays A — k if the die is one or two;
it pays r if the die is three or four; it pays A + k if the die is five or six. Figure 10a presents
such an example interface. In this example, r = 13.03, A = 9.35, A+k = 11.95, A — k = 7.35.

3.1.3 Interface and Decision — Contingent

Figure 10: Example interface for binary-lottery choice

Decision 1/ 50
Decision 7 /50 Please select an option by clicking your choice at the bottom of the page.

Please select an option by clicking your choice below. . . . .
P 4 9y Below is the lottery if you choose NOT to flip the coin:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Option A |

Die Roll
$13.03
L1 B [ B $7.86
$9.35 Below is the lottery f you choose to flip the coin:
9.90
Option B (] B $
; Heads  $10.06
$11.95 Die Roll
Coin
= Flip
[ ‘ LI N $5.86
$13.03 1 Tails
Would you like to flip the coin?
. o, Don't Flip the Coin es, Flip the Coin
[ $7.35 No, Don't Flip the Coi Yes, Flip the Coi
Please note that dice will be thrown and coins will be flipped after all
chnircas are made
(a) Plain arm (b) Contingent arm

Note: Left—example interface for the Plain arm. Right—example interface for the Contingent arm.

Risk is resolved by a fair die and, for one lottery, an additional coin flip.
e Simple lottery L5(A,r) (coin not involved):

— Die =1, 2, 5, or 6 — payoft A.

— Die = 3 or 4 — payoff r.
e Compound lottery L3(A, 7, k, k) (die + coin):
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— Die = 3 or 4 — payoff r (coin outcome irrelevant).
— Die =1, 2, 5, or 6:
x Coin = Heads — payoff A + k.

* Coin = Tails — payoff A — k.

Figure 10b shows an example with » = 9.90, A = 7.86, A + k = 10.06, and A — k = 5.86.

3.2 Theoretical Analysis

3.2.1 Choice-Acclimating Personal Equilibrium (CPE)

2 1 2 2
Ucpe(L2(A, 7)) = 3 A+ 37 U(gM(A —7r)+ 5#(7” - A)) :
- 2 1 1 -
UCPE([,g(A,T, E, k)) = § A + 57” + g(k - E)
+ gD =k —r) + Gu(r — A+ k) + gu(k — k) + gu(k — k)

+ s A+ k—71)+sulr — A —Fk)].
Proposition 12 (Contour-line prediction) If
Ucpe(Ls(A,r, k, k) > Ucpp(La(A, 1)),
then for every real x,
Ucpe(Ls(A+z,r + 2,k k) > Ucpp(L2(A + 2,7+ 2)).

Proof. Because adding the same constant z to both monetary outcomes of a lottery increases

the overall payoff by z in every state, the CPE utility satisfies

UCPE(ﬁg(A +z,r+ I,E, ]_C)) =x+ UCPE(£3<A, r, E, /;3))
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and

UCPE(EZ(A +x,r+ ﬂU)) =7+ UCPE(£2(Aa 7“))

Hence

UCPE([B(A +x,r+uxk, l%)) > UCPE(ﬁg(A +x,r+ l‘))
— z+ UCPE(£3(A7 rk, /;?)) > T+ UCPE(£2(A7 7“))
> Ucpp(L3(A, 1k, k) > Ucpr(L2(A, 1)),

which is exactly the hypothesis. Therefore the inequality is preserved for every x. m

Utility difference. Define
R(z) = Ucpp(Ls(r + z,r, k, k) — Ucpe(La(r + z,7)).

Proposition 13 (Shape of the A — r curve) Let ky;, = min{k, k}.

1. With constant sensitivity and A > 1, R(x) decreases on [—kmin,0] and increases on

[O) kmin] .

2. With constant sensitivity and A < 1, R(x) increases on [—kmin,0] and decreases on

[07 kmin] .

3. With diminishing sensitivity and A > 1, R(z) decreases on [—k“‘T‘“,O] and increases on

0.5
4. With diminishing sensitivity and X < 1, R(x) increases on [—]’““%,O] and decreases on
0, 3]
Proof.
R(x) = 3 (F — B)+ 1 [ — k) + gl + F) + o(le — &) — 26 (Ja])].

Constant sensitivity. The first two terms are constant in x; the sign of the derivative is
driven solely by —(1 — A)¢(|z|), producing a “V” shape for A > 1 and a hump for A < 1.
Diminishing sensitivity. For |z| < kynin/2, ¢'(|x|) dominates the other slopes, so the deriva-

tive again has the sign of —(1 — \)¢/(|z|), yielding the stated comparative statics. =
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Lottery Choice - CPE: Ls(A,r.k,k) vs. Lo(A,r)

-
~
- ~

- ‘~._ . _ A=0.5, Constant

A=2, Diminishing

A=2, Constant

Certainty Equivalent Difference

A-r (k=2,k=3,r=10)

Figure 11: Visualization of Proposition 13

The plot shows R(z) for k = 3 and k = 2. “Constant” denotes constant sensitivity; “Diminishing” denotes diminishing sensitivity.
A is_the loss-aversion parameter. For diminishing sensitivity we use a power function with exponent 0.7. The pink region is
r —k < A < r; the blue region is r < A <r + k.

Proposition 13 implies that, under standard gain—loss utility, CPE predicts the tri-outcome
lottery is less attractive when A is close to r. This parallels Proposition 1 in Ko6szegi and
Rabin (2007): a riskier Lo(r + x,7) lowers its own attractiveness and raises the relative appeal
of L3(r + z,7,k, k). Notably, the symmetry of CPE implies that even with gain seeking and

diminishing sensitivity R(x) has a kink around x = 0. Figure 11 illustrates these predictions.

3.2.2 Preferred Personal Equilibrium (PPE — “Flipping the Coin”)

Let
P = {(u,ﬁ, k,A,r) ‘ L3(A,r, k, k) is PPE}.

Proposition 14 (Contour-line prediction) If (u, k, k, A,r) € P, then for any z, (u, k, k, A+
x,r+z) €P.

Proof. First compute

_ 2 1 k—k
UPE(;C?,(A,T, Ea k) | LQ(A,T)) - gA + gr + T_
2 2 2 -
Z(— z —A z
+ (k) + gulr — &) + 5 (k)
1 1 _
+§M(A—T—E)+§M(A—T+k).
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Stopping as the reference. Lo(A, 1) is a PE iff

2pd =) 2 B h) ) 4 gpA B b A - kR ()

Flipping as the reference. L3(A,r,k, k) is a PE iff

% %p(A—k—r)+éu(A+k‘—r) 5
R R O R M/ WA R .
g1k —E) + g p(k > (k) + GuA =)+ Sp(=k).

Both inequalities depend only on A — r for fixed (y, k, k). Define
P3={(Ark k) | (2}, P2={(Arkku) | (1) fails},

and

C3={(A,r,k, k, 1) | Uopp(Ls) > Ucpp(L2)}.

Because A — r is independent of (u, k, k) and each condition above is a function of A —r, Ls
remains a PPE after adding the same = to both A and r. Thus the proposition holds. =

Proposition 14 shows that the contour line test is also applicable to PPE concept. If we
interpret u as a question-varying component that includes decision noises, and the choices are
determined by the PPE at choice level, then the choice probability conditional on A and r is
also a function of A — r, since the experimenters vary A and r such that they are independent
of u, k, k.

Define X (z) = {u|(r + 2,7, u,k, k) € Sppr}. Here u can be interpreted as subject-level
heterogeneity or choice-level decision noise. On the shape of A —r curve, we have the following

proposition:

Proposition 15 (Shape of the A —r curve) X (z) decreases in [—%’%},0] if all ele-

ments in the set of u satisfy one of the following conditions:
1. w exhibits constant sensitivity and A > 1.

2. exhibits diminishing sensitivity and A > 1.

37



Proof. When one of the condition holds, we have:

ou() Ous —F) dulx— ) Ople +F) dulx +h)
>
x > maz{ or ' or ' or ' ox }

Substitute A —r with x in inequality 1, it shows that with as = increases, the left hand side
is increasing at a faster rate than the right hand side. This means that for any given r, k, and
k, set P2 decreases in x, holding other components constant.

Similarly, substitute A —r with = in inequality 2, the right hand side is increasing at a faster
rate than the left hand side. This means that for any given r, k, and k, set P3 decreases in z,
holding other components constant.

According the derivation in Proposition 13, for any given r, k, and k, set C3 also decreases
in x, holding other components constant.

Since X (z) = P3N (P2UC3), and all sets decrease in x, therefore X (x) decrease in x.

]

m bl o]

The takeaway from Proposition 15 is that the decrease in [— is preserved under

PPE with conventional functional form assumptions.

3.2.3 Preferred Personal Equilibrium (PPE — “Not Flipping the Coin”)

The algebra is identical to that in the preceding subsection, except that every inequality is
reversed. Consequently, the contour-line prediction still applies.

Reversing the inequalities implies that the counterparts of the sets P2 and P3 for the not-
flipping option Ly are increasing in A —r over the interval specified in Proposition 15. Likewise,
the CPE utility inequality reverses direction.

Hence, if we assume that a subject chooses “Flipping the Coin” whenever “Not Flipping”
fails to be a PPE, the condition for choosing “Not Flipping” becomes tighter (harder to satisfy)

as A — r increases within
min{k,k}
|- o]

3.2.4 Bell-Loomes—Sugden (BLS)

2 1 2 |
Uis(£2(8,1) = 58+ 57+ 558 = 5r) + gulir = 5.

38



+ %u@A T S P
+ gl - 38— 558)
+gu(8A = 3= b~ 1),
UpLs(Ls(A, 7.k, k)) > Usrs(La2(A, 7))
= hgas ot iy - 18- ®

Proposition 16 (Contour-line prediction) [fUBLS(L’g(A,r, k, l%)) > UBLS(Eg(A,r)), then

for any real x,
UBLS(Eg(A +ax, 7+, k, l;:)) > UBLS(EQ(A +x,7+ I))

Proof. Adding the constant x to both A and r increases every payoff by x. Therefore
Uprs(Ls(A +z, 7 + 2, k, k) = 2+ Uprs(L3(A, r, k. k),

UBL5(£2<A + T, T -+ x)) =x+ UBLS(EQ(A,T)),

and the original inequality is preserved after the shift. m

Let
Rprs(x) = Upps(Ls(r + 2,1k, k) — Upps(L2(r + 2,7)).

Proposition 17 (Shape of the A —r curve) Suppose k < k < 5k. If either (i) A > 1
with constant sensitivity, or (ii) A > 1 with diminishing sensitivity, then Rprs(x) decreases on

[~k =54,

Proof. e 1
Ros(e) ===+ ol + 3+ 58) + g = 5
1 — 2 1
+gulzr = 5k = 5k) — Su(zr) — gu(—37)



Lottery Choice - BLS: Ls(A,r,k.k) vs. Lo(A,r)
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Figure 12: Visualization of Proposition 17

The curve plots Rprs(z) with E =3 and k = 2. “Constant” denotes constant sensitivity; “Diminishing” denotes diminishing
sensitivity. A is the loss-aversion parameter. For diminishing sensitivity we use a power function with exponent 0.7. Pink shading
marks r — k < A < r; blue shading marks r < A <7+ k.

k—k

For z € [—k, —"5%] we have 0 < —2z — ET_E < —2z. With constant sensitivity the difference

Op(37) 9 27 . 1 1 27, 1
> maxq oo p(5e + 5k + 5k), oop(5e — Sk — 5k) o
so the bracketed term gu(- -+ )+3pu(- - - )—2p(32) is decreasing in 2 under diminishing sensitivity,

and also under constant sensitivity when A\ > 1. The claimed monotonicity follows. m

Proposition 17 shows that, with standard parameter values, the marginal preference for the

tri-outcome lottery drops as long as —k < A —r < —E;—E. Figure 12 illustrates this numerically

and highlights the kink at A = r that is characteristic of gain—loss asymmetry.

3.2.5 Common Payment

The common payment itself serves as a point-wise reference point. In this case L3(A, 7, k, k)
is preferred to Lo(A,r) iff
1 - 1 2 1 - 1
3 ¢(A+k—r)+§ P(A—k-r) < 3 P(A-r) = 5 ¢(A+k—7”)+§ P(A—k—r) < ¢(A-r).
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This setting is mathematically equivalent to choosing between a sure payment and a 50-50
bet when r is an inconsequential point-wise reference. Section 1.2.3 showed that the propensity

to select L3(A,r, k, k) over Lo(A,r) decreases for A € [7’ — %l_c, r+ %E — %/_ﬁ]

Lottery Choice - Common Outcome: Ls(A,rk,k) vs. Lo(A,r

~ -

A=0.5, Diminishing"

5
1

Certainéy Equivalent Difference
1

'
&

k=-3 0 k=2 5
A-r (k=2,k=3,r=10)

Figure 13: Propensity to choose L3 over L5 when the common payment is the reference

The curve plots the certainty-equivalent difference between L£3(A,r, k, k) and L2(A,r) with r as the reference, k = 3, and k = 2.
“Constant” denotes constant sensitivity; “Diminishing” denotes diminishing sensitivity. A is the loss-aversion parameter. For
diminishing sensitivity we use a power function with exponent 0.7. Pink shading marks » — k < A < r; blue shading marks
r<A<r+k.

Under standard diminishing-sensitivity parameters, the propensity to choose L3 over Lo
typically falls as A — r approaches zero: taking an extra gamble is more attractive in the
convex region of the utility function (A < r) than in the concave region (A > r). Gain-loss

asymmetry moderates this effect, yet even with constant sensitivity the decline at A —r =0

persists.

3.2.6 Rank Dependence with Inverse-S Probability Weighting

Rank-dependent utility (RDU) with inverse-S weighting— the probability-weighting com-
ponent of cumulative prospect theory (CPT)— is typically viewed as distinct from reference
dependence. An RDU model with reference point zero can be naturally and easily applied to
this setup.

Figure 14 presents a numerical example. Unlike expectation-based reference-dependence

models, RDU predicts that the propensity to choose L3 over L, rises monotonically in the
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Figure 14: Propensity to choose L3(A, 7, k, k) over Lo(A, 1)

The curve plots the certainty-equivalent difference between L3(A,r, k, k) and L2(A,r) with 7 as the reference, k = 3 and k = 2.
“Constant” denotes constant sensitivity; “Diminishing” denotes diminishing sensitivity. -y is the curvature parameter in the inverse-

S weight w(p) = For diminishing sensitivity we use a power utility with exponent 0.7.

p’Y
pY+(1-p)7 "

shaded region and shows no kink at A —r = 0.

Intuitively, L3 is riskier than L,: for the bi-outcome lottery a die roll of 1, 2, 5, 6 yields A,
whereas for the tri-outcome lottery the same die outcomes yield either A — k or A + k. Thus
the mass on A is split into two events. When A is large, the convex segment of the weighting
function favors this split; when A is small, the concave segment disfavors it.

Outside the shaded region, this effect disappears: Tail independence implies that r ceases

to influence choices once it lies above or below all outcome realizations that vary with A.

3.2.7 Disappointment Aversion (Gul, 1991)

Our contour-line approach cannot accommodate the disappointment-aversion model of Gul
(1991), except in the knife-edge case where utility u is linear. More generally, it cannot handle
the broader class of betweenness preferences which, as summarised in Masatlioglu and Raymond

(2016), take the recursive form

Va(f) =Y _ Uz, Va(f)) f(x),

T
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Lottery Choice - Gul DA: Ls(A,rk,K) vs. Lo(A,r)
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Figure 15: Propensity to choose L3(A, 1, k, k) over Lo(A, 1)

The curve shows the certainty-equivalent difference between L3(A, 7, k, k) and L2(A,r) with 7 as the reference, k = 3 and k = 2.
“Constant” denotes linear utility; “Diminishing” denotes a power utility with exponent 0.7. (3 is the disappointment-aversion
parameter in Gul (1991) (8 > 1 = disappointment averse, 3 < 1 = elation seeking). For 8 = 3 we use the estimate from Camerer
and Ho (1994). Pink shading marks r — k < A < r; blue shading marks r < A < r + k. Certainty equivalents are computed using
the method of Cerreia-Vioglio et al. (2020).
with f(x) the probability of outcome z. Here Vp(f) serves both as the reference point for
evaluating x and as the certainty equivalent of the lottery, so A and r cannot be separated
analytically.

Nevertheless, since the model is designed for lottery choice, we examine its implications

numerically. Figure 15 shows that, as in expectation-based reference-dependence models, the

propensity to choose L3 dips when A — r is near zero.

3.3 Data Analysis
3.3.1 Average Derivative Test

Propositions 12, 14 and 16 imply that expectation-based reference dependence yields
(A, r) = E[Eg(A,r, k k) = Lo(A,r) | A,r} = g(A—r),

so that OII(A,r)/0A = — OlI(A,r)/Or.
As in Section 1.3.1, we estimate the conditional choice probability with npregress kernel

(Epanechnikov kernel; bandwidth chosen to minimise integrated MSE) and obtain cluster-
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bootstrap covariances. Each observation is a subject’s choice in one question; the dependent
variable equals 1 if L3 > L£5. Regressors are A and r. Let BA and BT be their average marginal

effects. We test the null
BA + Br = 0.

e If the hypothesis ,@A + Br = 0 is not rejected, we next test BA # 0 and Br = 0 separately.
Significant coefficients support a reference-dependent interpretation; insignificant ones

may indicate no influence or a masked, non-monotonic response, to be explored in Sections

3.3.2 and 3.3.3.

e If the hypothesis BA + BAT = 0 is rejected, none of the examined expectation-based mod-
els—CPE, PPE (for both lotteries), BLS, or common-payment reference—account for
aggregate behavior. We evaluate R R

Ba + Br
|BA| + ‘Br| ’
which lies in [—1, 1] when the denominator is positive. Values in [—0.2,0.2] are tagged

approximately reference dependent. These weights define the single-index g(BAA + BTT)

to be tested in Section 3.3.3.

3.3.2 Graphic Analysis

Two graphical diagnostics parallel those in Section 1.3.2:

1. Contour-line plot. Using npregress kernel with regressors A (plotted on the y-axis)
and r (plotted on the z-axis), we estimate the conditional choice probability and display
its level sets with twoway contour. Propositions 12, 14 and 16 imply that, if r is the
correct reference point, the contour lines should trace diagonals with slope 1 (45-degree

lines).

2. Probability curve. We plot the estimated choice probability against A—r using twoway
Ipolyci with its default bandwidth (which minimises conditional weighted mean inte-
grated squared error). Propositions 13, 15 and 17 predict that, under standard functional
forms, the propensity to choose the tri-outcome lottery decreases in at least some range

when A —r < 0. Sections 3.2.5 and 3.2.7 show that other expectation-based models yield
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similar qualitative patterns. By contrast, rank-dependent utility (Section 3.2.6) predicts
a sharp increase when A +k < r < A — k (tail independence) and little change outside
that interval. If the curve visually supports tail independence, we will test it formally in

Section 3.3.5.

3.3.3 Fan and Li (1996) Specification Test

As noted in Section 3.3.1, the specification we test depends on the outcome of the average-

derivative test:

e Hypothesis BA + BT = (0 is not rejected. We run the standard specification test: there

exists a non-constant function g(-) such that

E[L3(A,r,k k) = Lo(A,7) | Ar] = g(A —7).

e Hypothesis BA + BT = 0 is rejected. We apply an estimation-adjusted test: there exists

a non-constant function g(-) such that
E[La(A, k&) = Lo(A,7) | Ayr] = g(Ba A+ B, 1),

where BA and Br are the average-derivative estimates from Section 3.3.1.

Implementation details specific to this experiment appear below. The general procedure is

provided in Section 4.2.

Bandwidth scale parameters k1, (for the unrestricted two-dimensional nonparamet-

ric function)
e A-dimension: bandwidth scale = 1.5 x sd(A).

e r-dimension: bandwidth scale = 1.5 x sd(r).

Bandwidth scale parameters x;; and r, (for the restricted single-index function)

e Single-index dimension A — r: bandwidth scale = 1.5 x sd(A —r).
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3.3.4 Heterogeneity Analysis

To probe expectation-based reference dependence at the individual level, we estimate for

each subject

WLs(A,r k k) = Lo(Ar)) =B LA =7 >0) (A—7r)+ 8 LA —r <0)(A—r)+u,

where 81 captures the slope when the gain component (A — r) is non-negative and 3~ the

slope in the loss region.

Classification rule (EBRD = expectation-based reference dependence).

e 37 < —5%and ST > 5%: EBRD-loss-averse.
e 57 >5%and 8T < —5%: EBRD-gain-seeking.
o 5% < p” <5% and —5% < B < 5%: EBRD-loss-neutral.
e 57 > 5% and BT > 5%: pattern consistent with reference dependence or inverse-S
probability-weighting under linear utility. For these subjects we test tail-independence.
3.3.5 Tail Independence

As noted in Section 3.1.1, the paired questions 41 vs. 42, 43 vs. 44, 45 vs. 46, and 47 vs.
48 place the common payment r below every outcome that varies with A. This configuration
provides a direct test of tail independence. Pooling these eight observations per subject, we

estimate
1(£3(A, rk k) = Lo(A, r)) = [£1(0dd question) + Question-pair FE + Display-order FE + u,

where

e 1(0Odd question) equals 1 for questions 41, 43, 45, 47 (odd numbers) and 0 for 42, 44, 46,

48; within each pair the odd question has the larger value of A — r.
e Question-pair FE is a set of dummies for the four pairs (41-42, 43-44, 45-46, 47-48).
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e Display-order FE controls for the position in which a question appeared to the subject.

Tail independence predicts that g = 0.
Subject-level check. For each subject, we also compare choices within every pair (41 vs.
42), (43 vs. 44), (45 vs. 46), (47 vs. 48) and, in addition, (49 vs. 50).% If tail independence
holds, responses should be identical within each pair, because r lies outside the support of the

outcomes that vary with A.

4 Econometric Test

The consistent specification test of Fan and Li (1996) is not implemented in common
statistical software such as Stata. Below we outline its purpose and the procedure for applying

it.

4.1 Purpose

The test assesses whether an estimated choice probability—e.g. selecting the risky option
in the investment game, choosing to work more in the effort task, or opting for the tri-outcome
lottery—follows a specific structure when expressed as a function of experimentally manipulated
variables.

Let H(A, 7) denote the choice probability conditional on A and 7, where A is the shock to
the outcome and 7 is the shock to the benchmark (reference point). For any coefficients 5z and

[x the test evaluates

Hypothesis 1 There ezists a function g(-) such that
(A, 7) = g(BaA + B:7).

As shown in Fan and Li (1996), g(-) is unrestricted apart from mild regularity conditions
(e.g. continuity). Because the two covariates enter only through the linear index g AA + B;T,
this specification is termed a single-index model.

The same framework checks whether the fitted relationship is merely flat:

3Pair 49-50 is excluded from the aggregate regression because the regression focuses on testing when A > r.
At the individual level we include it to boost power and capture heterogeneity.
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Hypothesis 2 The function
g(r) = E[H(A,f) ‘ BAA + B = x
18 constant.

If Hypothesis 1 is not rejected but Hypothesis 2 is, we conclude that a non-trivial (non-

constant) single-index representation explains the data.

4.2 Procedure

Step 1: Determine the dependent variable and the regressors A and 7. In the
investment game, the dependent variable is an indicator for choosing the risky option. The
regressors A and 7 represent the cumulative shocks to the sure payment (outcome) and to the
hypothesized reference point, as detailed in Sections 1.2.2 and 1.3.1. In the effort task, the
dependent variable is an indicator for choosing to transcribe additional tasks. The regressors
A and 7 correspond to the shocks to effort payment and common payment, respectively, as
described in Sections 2.1 and 2.3.1. In the binary-lottery experiment, the dependent variable
is an indicator for choosing the tri-outcome lottery. Here, A and 7 correspond to the variables

A and r defined in Sections 3.1.1 and 3.3.1.

Step 2: Obtain Estimates for Average Marginal Effect fA and .. We use the average-
derivative estimates produced by Stata’s npregress kernel.* The command setup is given in

the earlier sections. Denote the estimates by BA and Br.

Step 3: Test the specification. If the hypothesis BA + BT = 0 is not rejected, test the
specification H(A, T) = g(A —7). If the hypothesis Ba+pB, =0is rejected, test the specification
(A, 7) = g(BaA + B,7). The test requires bandwidths for Gaussian kernels:

e Stage 1 (testing Hypothesis 1):

— Single-index (1-dimensional) bandwidth: x, N 703

1See Li et al. (2003) for technical properties of the estimation.
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— Unrestricted (2-dimensional) bandwidth: r;o N =94

Here, N is the total number of observations (one row per subject—choice pair) included in
the test. The scale parameters k1; and k9 are specified separately for each experiment

in Sections 1.3.3, 2.3.3, and 3.3.3.

e Stage 2 (testing Hypothesis 2):
Bandwidth = kN0

The scale parameter k4 is likewise set as specified in the same sections.

Let T} and T3 denote the test statistics for Hypotheses 1 and 2, respectively. Under the

null, the distributions of 77 and T, are asymptotically normal, allowing us to compute p-values.

Step 4: Interpret the test results together with BA and Br.

¢ Reference-point confirmed. Fail to reject Hyp. 1, reject Hyp.2, and fail to reject
BA + BT = 0. Conclusion: the hypothesized referent is correctly specified.

e Single-index holds, but not exact reference dependence. Fail to reject Hyp. 1,
reject Hyp. 2, and reject BA + BT = 0. A single-index structure fits, but deviates from

pure reference dependence; quantify the deviation as in Section 1.3.1, 2.3.1, 3.3.1.

e Single-index rejected or trivial. Either reject Hyp.1 (no single-index structure) or
fail to reject Hyp. 2 (index yields a constant). The choice pattern cannot be captured by

the proposed covariates in a meaningful single-index form.
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