
This document outlines the analysis plan for the trial “Using Equivalent Offsets to Test

Reference Dependence: Evidence from Three Experimental Paradigms.” It is organized into

four sections:

• Section 1 introduces the investment game experiment, in which participants accumulate

earnings over successive rounds. We test path-dependent reference points (e.g., the sta-

tus quo in Kahneman and Tversky, 1979) and identify the conditions under which they

update.

• Section 2 presents the effort task experiment, where participants choose between (i) a

lottery with no additional tasks and (ii) a stochastically dominating lottery that requires

additional tasks. Because both lotteries share a common payment, varying this amount

allows us to test expectation-based reference dependence (Kőszegi and Rabin, 2006) in

labor supply decisions.

• Section 3 describes the binary lottery choice experiment. Each option includes a common

consequence that varies across questions, enabling a test of expectation-based reference

dependence (Bell, 1985; Loomes and Sugden, 1986; Kőszegi and Rabin, 2007) for decisions

under risk.

• Section 4 sets out the common econometric testing procedures applied to data from all

three experiments.

1 Analysis Plan of Investment Game

1.1 Experimental Design

1.1.1 Basic Setup

In the experiment, subjects are initially endowed with a random amount S, defined as:

S = Su + Se

where Su ∼ U [11, 12] and Se ∼ N(0, 0.22). After receiving S, participants play 50 rounds of

the investment game. In each round, they choose an investment option. Their final cumulative

1



balance is paid as study compensation.

In round t participants choose between a safe and a risky investment:

• Safe option. The cumulative balance at the end of the round is certain.

– For t = 1: the payoff is S +∆1, with ∆1 ∼ N(0, 0.22).

– For t ≥ 2: the payoff equals the previous round’s balance (displayed as “current

earnings”) plus ∆t, with ∆t ∼ N(0, 0.22).

• Risky option. The payoff may be either $0.45 above or $0.43 below the corresponding

safe payoff in the same round. A ball drawn from an urn containing 49 blue and 51 red

balls determines the outcome: a blue ball yields the higher payoff, a red ball the lower.

Figure 1: Box of Blue and Red Balls

Given the data-generating structure described above, the payoffs of both the risky invest-

ment and the safe investment covary across rounds, being higher in some rounds and lower in

others. We will explain to the subjects in the instructions that this variation in payoffs reflects

the fluctuations of the economy, which goes through periods of growth and decline through-

out our experiment. This will be easy to communicate as it naturally aligns with the typical

characteristics of financial markets.

1.1.2 Experimental Variation and Interface — Baseline

Figure 2 presents an example screenshot of Round 2. Subjects who reach this round pick

either Option A or Option B by clicking anywhere inside the corresponding box. The starting

earnings for the investment activity appear on the left side of each box. “Starting Earnings”
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refers to the randomized earnings obtained at the beginning of the experiment, whereas “Cur-

rent Earnings” refers to the latest cumulative earnings. Because the screenshot is from Round

2, the current earnings equal the cumulative earnings at the end of Round 1. After a choice is

made, the updated cumulative earnings are shown on the right side of the box, labelled “New

Earnings.” Dark blue (dark red) indicates that the comparatively high (low) payoff was realised

when the risky investment was chosen.

Figure 2: Screenshot of choice interface

After subjects make their choices, we display the outcome and update their current earnings

accordingly. The figures below show an example sequence: Figure 3a highlights the box after

it is clicked; Figure 3b displays the outcome with the realised payoff; Figure 3c presents the

next-round choice screen with the updated current earnings.

1.1.3 Experimental Variation and Interface — AutoInvest

The other arm, labelled AutoInvest, shares the same consequential variables as Baseline;

the key differences lie in the (inconsequential) path of earnings that lead to those payoffs:

• After each round, participants’ earnings are automatically invested in an index fund,

mirroring a common passive investment strategy in practice.
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(a) Clicked (b) Outcome (c) Next round

Figure 3: Interface sequence in the Baseline condition

(a) Clicked (b) Outcome (c) Next round

Figure 4: Interface sequence in AutoInvest
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• The value shown below “Current Earnings” in Figure 4a reflects the realised return from

the index fund.

• As shown in Figure 4c, the amount displayed under “Starting Earnings” equals the cumu-

lative earnings carried over from the previous round’s choice. Thus, “Starting Earnings”

St vary across rounds in AutoInvest, whereas in Baseline they remain fixed at the initial

balance (St ≡ S).

• “Current Earnings” in round t equal the payoff of the safe option in that round plus

an independent shock ϵt, where ϵt ∼ N(0, 0.22). Under this data-generating process,

current earnings are inconsequential and do not affect the path of earnings accumulation

compared to Baseline.

1.2 Theoretical Analysis

1.2.1 Assumptions and Experimental Variations

Round 1

Game
Begins
S

S+ ∆1

S+ ∆1 + 0.45

S+∆1 − 0.43

Safe

Risky

Higher

Lower

Round 1 Round 2

Game
Begins
S

S +∆1

S +∆1 + 0.45

S +∆1 − 0.43

S +∆1 + 1.1 + ∆2

S +∆1 − 0.43+∆2

S +∆1 − 0.43+∆2 + 0.45

S +∆1 − 0.43+∆2 − 0.43

S +∆1 + 0.45+∆2 + 0.45

S +∆1 + 0.45+∆2 − 0.43

S +∆1+∆2 + 0.45

S +∆1+∆2 − 0.43

S +∆1+∆2

Safe

Safe

Safe

Safe

Risky

Risky

Risky

Risky

Higher

Higher

Higher

Higher

Lower

Lower

Lower

Lower

The diagrams above visualise the paths of consequential variables and the round-by-round

variation. These earnings paths are identical in the Baseline and AutoInvest arms. As explained

in Section 1.1.1, a value shock ∆i is introduced in every round. In each round subjects choose

either the safe investment or the risky investment, represented by the two branches that split at

“Game Begins.” The safe investment has one possible outcome; the risky investment has two,

shown by the bifurcation at “Risky.”

In the Baseline arm, the payoff realised in Round 1 is displayed as “Current Earnings” in

Round 2, whereas in AutoInvest it appears under “Starting Earnings.” The right-hand diagram

5



shows how the cumulative earnings in Round 2 evolves given the outcome in Round 1. A

new shock ∆2 is then added to both options in Round 2. The safe payoff differs from current

earnings after Round 1 by exactly ∆2, while the risky payoff may be $0.45 higher or $0.43

lower. Changes since Round 1 are highlighted in red. These shocks provide enough variation

to distinguish starting earnings from current earnings—or from any fixed convex combination

of past payoffs.

Applying the test requires an assumption about how subjects bracket outcomes. Laboratory

evidence (Rabin and Weizsäcker, 2009; Ellis and Freeman, 2024) suggests that most subjects use

narrow framing, and such behavior appears across contexts and helps explain key phenomena

in financial decision-making under risk (Benartzi and Thaler, 1995; Read et al., 1999; Rabin

and Thaler, 2001; Barberis et al., 2006). We therefore adopt the narrow-framing assumption.

Even if some subjects look ahead, the test still applies: by design, a shock to ∆ in the current

round shifts future payoff paths in parallel, preserving the required variation.

1.2.2 Testing Contour Lines

One practical difficulty in testing path-dependent reference points is that accumulated earn-

ings also depend on subjects’ past choices. This can be problematic if variation attributed to

a hypothesized referent is actually driven by unobserved risk preferences or by belief updates

(e.g. extrapolation, mean reversion, or learning).

Our experiment identifies variation that can be used to test path-dependent reference de-

pendence in a necessarily dynamic environment. Let Et denote cumulative earnings when the

safe option is chosen in round t. Let S be the initial endowment, ∆t ∼ N(0, 0.22) the exogenous

shift in pay-offs in round t, and mt the risky return in round t:

mt =

0.45, if the ball is blue,

−0.43, if the ball is red.

Let Ct be a dummy that equals 1 when the risky option is chosen in round t. Then

Et = S +
∑
i≤t

(Cimi +∆i) =
∑
i≤t−1

Cimi︸ ︷︷ ︸
endogenous

+
(
S +

∑
i≤t

∆i

)
︸ ︷︷ ︸

exogenous

.
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When applying our test in round t we use only the exogenous terms:

• Baseline. For testing current earnings as the referent, the outcome variable is S+
∑

i≤t ∆i;

current earnings are S +
∑

i≤t−1∆i; starting earnings are S.

• AutoInvest. The outcome variable is the same as in Baseline. Current earnings are

(S +
∑

i≤t ∆i) + ϵt
1. Starting earnings are S +

∑
i≤t−1∆i.

Proposition 1, 2, and 3 explain why the contour-line prediction holds when testing (i)

starting earnings in Baseline, (ii) current earnings in Baseline (which is also starting earnings

in AutoInvest), and (iii) current earnings in AutoInvest. Intuitively, if the relevant reference

point is either the initial balance or the most recent balance, shifting that balance alone does

not change subsequent incentives conditional on the distance between the outcome and the

reference point.

Proposition 1 If for any S, S ′, ∆t, m⃗t−1 ≡ (m1,m2, ...,mt−1), C⃗t−1 ≡ (C1, C2, ..., Ct−1),

∆⃗t−1 ≡ (∆1,∆2, ...,∆t−1), E[Ct|∆t, S, m⃗t−1, C⃗t−1, ∆⃗t−1] = E[Ct|∆t, S
′, m⃗t−1, C⃗t−1, ∆⃗t−1], then

the following results hold:

1. For any x, E[Ct|S,
∑

i≤t ∆i = x] = E[Ct|S ′,
∑

i≤t ∆i = x].

2. Let Π(r, δ) ≡ E[Ct|S = r, S +
∑

i≤t ∆i = δ]. If Π(r, δ) is differentiable, for any r and δ,

∂Π(r,δ)
∂r

= −∂Π(r,δ)
∂δ

.

Proof. Item 1 is proved by the following observation:

E[Ct|S,
∑
i≤t

∆i = x] = Em⃗t−1,C⃗t−1,
∑

i≤t ∆i=x[E[Ct|∆t, S, m⃗t−1, C⃗t−1, ∆⃗t−1]]

= Em⃗t−1,C⃗t−1,
∑

i≤t ∆i=x[E[Ct|∆t, S
′, m⃗t−1, C⃗t−1, ∆⃗t−1]]

= E[Ct|S ′,
∑
i≤t

∆i = x]

1ϵt is defined in Section 1.1.3.
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Given item 1, we have:

∂Π(r, δ)

∂r
= lim

s→0

E[Ct|S + s,
∑

i≤t ∆i = x− s]− E[Ct|S,
∑

i≤t ∆i = x]

s
=

lim
s→0

E[Ct|S,
∑

i≤t∆i = x− s]− E[Ct|S,
∑

i≤t ∆i = x]

s

= − lim
s→0

E[Ct|S,
∑

i≤t∆i = x+ s]− E[Ct|S,
∑

i≤t ∆i = x]

s

whereas

∂Π(r, δ)

∂δ
= lim

s→0

E[Ct|S,
∑

i≤t ∆i = x+ s]− E[Ct|S,
∑

i≤t∆i = x]

s

Proposition 2 If for any ∆t, S, S
′, m⃗t−1 ≡ (m1,m2, ...,mt−1), m⃗

′
t−1, C⃗t−1 ≡ (C1, C2, ..., Ct−1),

C⃗ ′
t−1, ∆⃗t−1 ≡ (∆1,∆2, ...,∆t−1), ∆⃗

′
t−1, E[Ct|∆t, S, m⃗t−1, C⃗t−1, ∆⃗t−1] = E[Ct|∆t, S

′, m⃗′
t−1, C⃗

′
t−1, ∆⃗

′
t−1],

then the following results hold:

1. For any x, x′, E[Ct|S +
∑

i≤t−1∆i = x,∆t] = E[Ct|S +
∑

i≤t−1∆i = x′,∆t].

2. Let Π(r, δ) ≡ E[Ct|S +
∑

i≤t−1 = r, S +
∑

i≤t ∆i = δ]. If Π(r, δ) is differentiable, for any

r and δ, ∂Π(r,δ)
∂r

= −∂Π(r,δ)
∂δ

.

Proof. Item 1 is proved by the following observation:

E[Ct|S +
∑
i≤t−1

∆i = x,∆t] = Em⃗t−1,C⃗t−1,S+
∑

i≤t−1 ∆i=x[E[Ct|∆t, S, m⃗t−1, C⃗t−1, ∆⃗t−1]]

= Em⃗t−1,C⃗t−1,S+
∑

i≤t−1 ∆i=x′ [E[Ct|∆t, S, m⃗t−1, C⃗t−1, ∆⃗t−1]]

= E[Ct|S +
∑
i≤t−1

∆i = x′,∆t]

Given the results from Item 1, we have

∂Π(r, δ)

r
= lim

s→0

E[Ct|S +
∑

i≤t−1∆i = r + s,∆t = δ − r − s]− E[Ct|S +
∑

i≤t−1∆i = r,∆t = δ − r]

s

= lim
s→0

E[Ct|S +
∑

i≤t−1∆i = r,∆t = δ − r − s]− E[Ct|S +
∑

i≤t−1∆i = r,∆t = δ − r]

s

= − lim
s→0

E[Ct|S +
∑

i≤t−1∆i = r,∆t = δ − r + s]− E[Ct|S +
∑

i≤t−1∆i = r,∆t = δ − r]

s
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whereas

∂Π(r, δ)

δ
= lim

s→0

E[Ct|S +
∑

i≤t−1∆i = r,∆t = δ − r + s]− E[Ct|S +
∑

i≤t−1∆i = r,∆t = δ − r]

s

Proposition 3 If for any ∆t, ∆
′
t, S, S

′, m⃗t−1 ≡ (m1,m2, ...,mt−1), m⃗
′
t−1, C⃗t−1 ≡ (C1, C2, ..., Ct−1),

C⃗ ′
t−1, ∆⃗t−1 ≡ (∆1,∆2, ...,∆t−1), ∆⃗

′
t−1, E[Ct|ϵt,∆t, S, m⃗t−1, C⃗t−1, ∆⃗t−1] = E[Ct|ϵt,∆′

t, S
′, m⃗′

t−1, C⃗
′
t−1, ∆⃗

′
t−1],

the following results hold:

1. For any x, E[Ct|ϵt, S +
∑

i≤t ∆i = x] = E[Ct|ϵt, S +
∑

i≤t∆i = x′].

2. Let Π(r, δ) ≡ E[Ct|S +
∑

i≤t ∆i = r, S +
∑

i≤t∆i + ϵ = δ]. If Π(r, δ) is differentiable, for

any r and δ, ∂Π(r,δ)
∂r

= −∂Π(r,δ)
∂δ

.

Proof. Item 1 is proved by the following observation:

E[Ct|ϵt, S +
∑
i≤t

∆i = x] = Em⃗t−1,C⃗t−1,S+
∑

i≤t ∆i=x[E[Ct|ϵt,∆t, S, m⃗t−1, C⃗t−1, ∆⃗t−1]]

= Em⃗t−1,C⃗t−1,S+
∑

i≤t ∆i=x′ [E[Ct|ϵt,∆t, S, m⃗t−1, C⃗t−1, ∆⃗t−1]]

= E[Ct|ϵt, S +
∑
i≤t

∆i = x′]

Given the results from Item 1, we have

∂Π(r, δ)

r
= lim

s→0

E[Ct|S +
∑

i≤t∆i = δ, ϵt = r + s− δ]− E[Ct|S +
∑

i≤t∆i = δ, ϵt = r − δ]

s

whereas

∂Π(r, δ)

δ
= lim

s→0

E[Ct|S +
∑

i≤t∆i = δ + s, ϵt = r − s− δ]− E[Ct|S +
∑

i≤t∆i = δ, ϵt = r − δ]

s

= lim
s→0

E[Ct|S +
∑

i≤t ∆i = δ, ϵt = r − s− δ]− E[Ct|S +
∑

i≤t ∆i = δ, ϵt = r − δ]

s

= − lim
s→0

E[Ct|S +
∑

i≤t∆i = δ, ϵt = r + s− δ]− E[Ct|S +
∑

i≤t∆i = δ, ϵt = r − δ]

s
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1.2.3 Analyzing Parametric Forms of Reference Dependence

We focus on the status-quo reference point (current earnings) in Baseline. Analysis of other

candidate reference points is similar, because each is a pointwise benchmark determined by the

path leading up to the current choice set.

Let G0(O) denote the safe option, which yields the sure payoff O. Let G1(O + k̄, O − k)

denote the risky option, which increases earnings by k̄ if the ball is blue and decreases them by

k if the ball is red.

Define the reference-dependent value function

µ(x) =

−λφ(−x), x < 0,

φ(x), x ≥ 0,

where φ : [0,∞) → R satisfies φ(0) = 0, φ′(x) > 0 and φ′′(x) ≤ 0. The parameter λ captures

loss attitude: λ > 1 implies loss aversion, λ = 1 loss neutrality.

Proposition 4 Let CE(·) be the certainty equivalent of an option and let the reference point

be r. If either (i) λ = 1 and µ(·) exhibits diminishing sensitivity, or (ii) λ > 1 and µ(·) exhibits

constant or diminishing sensitivity, then

CE
(
G1(O + k̄, O − k)

)
−O

is decreasing in O for O ∈
[
r − 0.49 k̄, r + 0.51 k − 0.49 k̄

]
.

Proof. The utility of G1(O + k̄, O − k) is: 49%µ(O − r + k̄) + 51%µ(k − O + r). Since

O − r < −49%k̄ + 51%k, we have

49%µ(O − r + k̄) + 51%µ(O − r − k) < 49%µ(−49%k̄ + 51%k + k̄) + 51%λµ(−49%k̄ + 51%k − k)

= 49%µ(51%(k̄ + k)) + 51%µ(−49%(k̄ + k)) = 49%φ(51%(k̄ + k))− 51%λφ(49%(k̄ + k))

≤ 49%
51%

49%
φ(49%(k̄ + k))− 51%λφ(49%(k̄ + k)) ≤ 0

Therefore CE(G1(O + k̄, O − k)) < r. Thanks to constant/ diminishing sensitivity, we have

∂µ(x− r)

∂x
|x=CE(G1(O+k̄,O−k)) ≥

∂µ(x− r)

∂x
|x=O−k
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When O − r > − k̄
2
, below we show by contradiction that

∂µ(x− r)

∂x
|x=CE(G1(O+k̄,O−k)) ≥

∂µ(x− r)

∂x
|x=O+k̄

Suppose this is not the case, then due to diminishing sensitivity, for any O − k < x− <

CE(G1(O + k̄, O − k)) < x+ < O + k̄ we have

∂µ(x− r)

∂x
|x=x− ≤ ∂µ(x− r)

∂x
|x=x+

By the definition of certainty equivalent

51%[µ(CE(G1(O + k̄, O − k))− r)− µ(O − k − r)] = 49%[µ(O + k̄ − r)− µ(CE(G1(O + k̄, O − k))− r)]

⇐⇒ 51%

∫ x=CE(G1(O+k̄,O−k))

x=O−k

∂µ(x− r)

∂x
dx = 49%

∫ x=O+k̄

x=CE(G1(O+k̄,O−k))

∂µ(x− r)

∂x
dx

=⇒ 51%(CE(G1(O + k̄, O − k))−O + k) ≥ 49%(O + k̄ − CE(G1(O + k̄, O − k)))

⇐⇒ CE(G1(O + k̄, O − k)) ≥ O − 51%k + 49%k̄ ≥ r − 51%k

=⇒ |CE(G1(O + k̄, O − k))− r| ≤ 51%k < 51%k̄ ≤ |O + k̄ − r|

Diminishing sensitivity implies that ∂µ(x−r)
∂x

|x=CE(G1(O+k̄,O−k)) > ∂µ(x−r)
∂x

|x=O+k̄, which leads to

contradiction. As µ(.) is monotone, we have

∂(CE(G1(O + k̄, O − k)))

∂O
=

∂(CE(G1(O + k̄, O − k)))

∂µ(CE(G1(O + k̄, O − k))− r)

∂µ(CE(G1(O + k̄, O − k))− r)

∂O

=
∂(CE(G1(O + k̄, O − k)))

∂µ(CE(G1(O + k̄, O − k))− r)
(49%µ′(O + k̄ − r) + 51%µ′(O − k − r))

=
49%µ′(O + k̄ − r) + 51%µ′(O − k − r)

µ′(CE(G1(O + k̄, O − k))− r)
≤ 1

Proposition 4 implies that the propensity to take risk decreases as the sure payment O

approaches the reference point r from below. Figure 5 shows that, for common parametric forms,

this decline extends well beyond the region specified in the proposition. The derivation and

simulation echo the usual intuition from the disposition-effect literature: diminishing sensitivity

can explain greater risk taking in the presence of prior investment losses.
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Figure 5: Certainty-equivalent difference in the investment game

Note: The figure illustrates Proposition 4. It plots CE(G1)− CE(G0) against O − r. The parameter λ measures loss aversion.
“Diminishing sensitivity” uses a power utility with exponent 0.7. The pink area marks the loss region.

1.3 Data Analysis

Variables Utilized As outlined in Section 1.2.2, reference dependence implies that we can

apply a contour-line test using the total accumulated shocks. We retain the original notation

and restate below the variables used for each round t:

• Ct is the dependent variable, equal to 1 if the risky option is selected.

• In Baseline:

– the exogenous component of the outcome is (S +
∑

i≤t ∆i);

– for current earnings, it is (S +
∑

i≤t−1∆i);

– for starting earnings, it is simply S.

• In AutoInvest :

– the exogenous component of the outcome remains (S +
∑

i≤t ∆i);

– for current earnings, it is (S +
∑

i≤t∆i + ϵt);

– for starting earnings, it is (S +
∑

i≤t−1∆i).

12



1.3.1 Average Derivative Test

Propositions 1, 2 and 3 show that the contour-line prediction holds: at any value the shocks

may take, the marginal effect of shocks to outcomes should be the additive inverse of the

marginal effect of shocks to the referent under test. This theoretical result corresponds to the

average marginal effect (average derivative) of a regressor in econometrics.

The Stata command npregress kernel fits the conditional choice probability non-parametrically

with an Epanechnikov kernel, selects the bandwidth that minimizes integrated mean-squared

error, and reports the average marginal effect of each regressor together with a cluster-bootstrap

covariance matrix.2

Regressors for each treatment are:

• Baseline, round t (t ≥ 2). Dependent variable: Ct. Regressors: (a) shocks to the sure

payment S +
∑

i≤t ∆i; (b) shocks to starting earnings S; (c) shocks to current earnings

S +
∑

i≤t−1∆i. Denote the corresponding average marginal effects by β̂a
Baseline, β̂

b
Baseline

and β̂c
Baseline. Test: β̂

a
Baseline + β̂b

Baseline = 0 and β̂a
Baseline + β̂c

Baseline = 0.

• AutoInvest, round t (t ≥ 2). Dependent variable: Ct. Regressors: (a) shocks to the sure

payment S+
∑

i≤t ∆i; (b) shocks to starting earnings S+
∑

i≤t−1∆i; (c) shocks to current

earnings S +
∑

i≤t∆i + ϵt. Denote the effects by β̂a
AutoInvest, β̂

b
AutoInvest and β̂c

AutoInvest.

Test: β̂a
AutoInvest + β̂b

AutoInvest = 0 and β̂a
AutoInvest + β̂c

AutoInvest = 0.

Failing to reject a null means we cannot rule out that the average marginal effect of shocks

to outcomes equals the additive inverse of the effect for the candidate referent. If we fail to

reject any of the null hypotheses, we then test whether each individual marginal effect differs

from zero. For example, if β̂a
Baseline+ β̂c

Baseline = 0 is not rejected, we next test β̂a
Baseline = 0 and

β̂c
Baseline = 0 separately. In this example, rejecting β̂a

Baseline = 0 and β̂c
Baseline = 0 strengthens

the case that current earnings influence behavior in a non-trivial reference-dependent way;

otherwise, the variable may have no effect or a non-monotonic effect, which will be examined

in Sections 1.3.2 and 1.3.3.

2“Average” refers to the sample average of the partial derivatives evaluated at each observation. The com-
mand is available in Stata 15 or later. See Li et al. (2003); Cattaneo and Jansson (2018) for theoretical
background.
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If both nulls are rejected for a treatment arm, neither hypothesized referent passes the test.

We then quantify the deviation from the null with

β̂a
Baseline + β̂b

Baseline

|β̂a
Baseline|+ |β̂b

Baseline|
,

β̂a
Baseline + β̂c

Baseline

|β̂a
Baseline|+ |β̂c

Baseline|
,

β̂a
AutoInvest + β̂b

AutoInvest

|β̂a
AutoInvest|+ |β̂b

AutoInvest|
,

β̂a
AutoInvest + β̂c

AutoInvest

|β̂a
AutoInvest|+ |β̂c

AutoInvest|
.

Each ratio lies between−1 and 1; values in [−0.2, 0.2] are labelled approximately reference dependent.

Regardless of whether the hypotheses is rejected, the average derivatives identify coefficients

in a single-index model (Powell et al., 1989). We therefore construct a single-index candidate

and apply the specification test of Fan and Li (1996) in Section 1.3.3. We choose the referent

whose ratio above is closest to zero. For example, if in AutoInvest the selected ratio is

β̂a
AutoInvest + β̂b

AutoInvest

|β̂a
AutoInvest|+ |β̂b

AutoInvest|
,

we test the single index β̂a
AutoInvest(S +

∑
i≤t∆i) + β̂b

AutoInvest(S +
∑

i≤t−1∆i). If instead the

chosen ratio is
β̂a
AutoInvest + β̂c

AutoInvest

|β̂a
AutoInvest|+ |β̂c

AutoInvest|
,

we test

g
(
β̂a
AutoInvest(S +

∑
i≤t

∆i) + β̂c
AutoInvest(S +

∑
i≤t

∆i + ϵt)
)
.

1.3.2 Graphical Analysis

We will present two graphical diagnostics that provide an intuitive illustration of the em-

pirical results:

1. Contour-line plots. We estimate the conditional choice probability with npregress

kernel as in Section 1.3.1, but include only two regressors: the cumulative shocks to the

outcome and the cumulative shocks to the candidate reference point. The shocks to the

outcome, S +
∑

i≤t∆i, are plotted on the y-axis. The shocks to the candidate reference

point are plotted on the x-axis: S+
∑

i≤t−1∆i (current earnings) and S (starting earnings)

in Baseline; S +
∑

i≤t∆i + ϵt (current earnings) and S +
∑

i≤t−1∆i (starting earnings)

in AutoInvest. Thus, each treatment arm yields two contour-line plots, one for each

candidate reference point. We render the fitted surface with the Stata command twoway
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contour. Propositions 1–3 imply that, if the variable on the x-axis is indeed the reference

point, the contour lines should align along a 45-degree line.

2. Choice probability curves. We estimate the conditional choice probability as a func-

tion of the difference between the shocks to the outcome and those to the candidate refer-

ence point using twoway lpolyci with its default kernel (epanechnikov) and bandwidth

(which minimizes the conditional weighted mean integrated squared error). Proposition 4

predicts that, under the correct reference point, the curve should be weakly decreasing

in the loss region near zero. As illustrated in Figure 5, with diminishing sensitivity the

probability of choosing the risky option generally falls, although non-monotonic behavior

is possible when utility is linear in gains and losses.

1.3.3 Fan and Li (1996) Specification Test

As noted in Section 1.3.1, the specification to be tested depends on the outcome of the

average-derivative test:

• If at least one candidate referent r passes the average-derivative test, we conduct the

standard specification test for that candidate: there exists a non-constant function g(·)

such that

E
[
Ct | ∆̃, r̃

]
= g
(
∆̃− r̃

)
.

• If no candidate passes and a single referent is chosen by the criterion in Section 1.3.1, we

apply an estimation-adjusted specification test: there exists a non-constant function g(·)

such that

E
[
Ct | ∆̃, r̃

]
= g
(
β̂∆̃∆̃ + β̂r̃r̃

)
,

where β̂∆̃ and β̂r̃ are the average-derivative estimates from Section 1.3.1.

Details specific to this experiment are set out below; general procedures appear in Section

4.2.

Sample selection In the Baseline arm, current and starting earnings coincide in Round 1

and only begin to diverge as shocks ∆t accumulate over time. Because the specification test
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permits only one candidate referent at a time, we plan to restrict the analysis to Rounds 21–50

to ensure sufficient statistical separation between shocks to current and starting earnings.

Bandwidth scale parameters κ12 (unrestricted two–dimensional nonparametric func-

tion in both outcome and hypothesized-referent dimensions)

• Baseline — current earnings: 1.5× sd(∆t)

• Baseline — starting earnings: 1.5× sd
(∑

i≤t ∆i

)
• AutoInvest — current earnings: 1.5× sd(ϵt)

• AutoInvest — starting earnings: 1.5× sd(∆t)

Bandwidth scale parameters κ11 and κ2 (restricted single-index function)

• Baseline — current earnings: 1.5× sd(∆t)

• Baseline — starting earnings: 1.5× sd
(∑

i≤t∆i

)
• AutoInvest — current earnings: 1.5× sd(ϵt)

• AutoInvest — starting earnings: 1.5× sd(∆t)

Hence, for any experimental arm–referent combination, the three scale parameters κ11, κ12,

and κ2 are all set to

1.5× sd
(
cumulative shocks to the outcome − cumulative shocks to the referent

)
.

This bandwidth choice is calibrated to accommodate the elliptical support of the joint distri-

bution of outcome and referent shocks.

1.3.4 Heterogeneity Analysis

The idea behind the heterogeneity analysis is that, when outcomes are shifted, reference-

independent behavior with locally linear utility implies a constant level of risk taking. By

contrast, Proposition 4 predicts that the probability of choosing the risky option declines over a
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sizable range as the difference (shock to outcome−shock to referent) increases. To capture this,

each subject’s choices are regressed on that difference, treating current earnings and starting

earnings separately within each treatment arm.

Baseline arm. For each subject we run

Ct = βS

(
S +

∑
i≤t

∆i − S

)
+ βC

(
S +

∑
i≤t

∆i −
(
S +

∑
i≤t−1

∆i

))
+ ut,

where ut is the regression disturbance.

AutoInvest arm. For each subject we run

Ct = βS

(
S +

∑
i≤t

∆i −
(
S +

∑
i≤t−1

∆i

))
+ βC

(
S +

∑
i≤t

∆i −
(
S +

∑
i≤t

∆i + ϵt
))

+ ut.

Here ϵt is the index-fund shock defined earlier, while ut again denotes the regression disturbance.

Classification rule. Building on Proposition 4 and the tests in Sections 1.3.1, 1.3.2 and

1.3.3, subjects are classified separately within the Baseline and AutoInvest arms:

• If only current earnings are favored, a subject is labelled “reference dependent” when

βC κC ≤ −5%; otherwise “not reference dependent.”

• If only starting earnings are favored, a subject is labelled “reference dependent” when

βS κS ≤ −5%; otherwise “not reference dependent.”

• If both or neither variables are favored, we compare the two scaled effects: a subject

is “reference dependent regarding starting earnings” when βS κS ≤ min{−5%, βC κC};

“reference dependent regarding current earnings” when βC κC ≤ min{−5%, βS κS}; oth-

erwise “not reference dependent.”

κS and κC denote the sample standard deviations of the respective regressors for that subject.
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2 Analysis Plan of Effort Task

2.1 Experimental Design

In this experiment, subjects choose between a lower workload with lower lottery payoffs and

a higher workload with higher lottery payoffs. At the start they complete two CAPTCHA-style

transcription tasks involving blurry Greek letters, following the format of Augenblick et al.

(2015). Figure 6 shows the interface.

Subjects are then presented with 50 binary choices. In each choice they decide between (i)

a lottery requiring no additional transcription, and (ii) a more favorable lottery that requires

further transcription tasks. Each lottery has two outcomes. One outcome is identical in both

lotteries—hereafter the common payment. The other outcome is higher in the lottery that

requires extra tasks—hereafter the effort payment. (These labels are used only in the analysis,

not in the experiment.) Figure 7 illustrates the three attributes displayed for each option: (a)

the extra number of tasks, (b) the common payment, (c) the effort payment. The red amount

is the payoff if the coin flip returns Heads, and the blue amount is the payoff if it returns Tails;

which payment (common or effort) is shown in each color is randomized across questions.

Across the 50 questions there are five possible extra task counts: 1, 3, 5, 7, and 10. Each

count appears in ten questions. Let r denote the common payment in a question, with

r = xr + zr, xr ∼ U [6.5, 13.5], zr ∼ N(0, 0.252).

Let ∆ denote the effort payment in the no-extra-task option, and ∆ + b the effort payment in

the extra-task option, where

∆ = x∆ + z∆, x∆ ∼ U [6.5, 10], z∆ ∼ N(0, 0.252).

Within each task count (ten questions) the increment b takes the values 0.41, 1.23, 2.05, 2.87,

and 4.10, each value appearing in two questions. Hence the triple (∆, r, b) is independently

randomised across questions and subjects, and is independent of the extra number of tasks.

One of the 50 choices is selected for payment. If the subject chose the no-task option, a die

is rolled and the payment is revealed immediately. If the subject chose the extra-task option,
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Figure 6: Example screenshot of effort task

Figure 7: Example screenshot of decisions

19



the additional transcription must be completed before payment is revealed.

2.2 Theoretical Analysis

2.2.1 Set-ups and Assumptions

Expectation-based reference dependence (Kőszegi and Rabin, 2006) Decision mak-

ers’ utility from performing e extra tasks in return for lottery L is

∫
x dFL(x) +

∫∫
µ(x− y) dFL(x) dFL′(y) − c(e),

where FL is the distribution of L and FL′ the distribution of the reference lottery L′. The

reference-dependent gain–loss utility is

µ(x− y) =

−λ η φ(y − x), x− y < 0,

η φ(x− y), x− y ≥ 0,

with φ : [0,∞) → R twice differentiable, φ(0) = 0, φ′(x) > 0 and φ′′(x) ≤ 0 for x > 0. The

parameter λ > 0 captures loss attitude (λ > 1: loss aversion, λ < 1: gain seeking); η weights

gain–loss utility relative to direct utility. c(e) is the effort-cost function.

To streamline notation:

• η is retained for consistency but not discussed separately.

• Because the lotteries’ payoff distributions do not depend on e, we write the effort cost

simply as a constant c below.

Besides personal equilibrium (PE) and preferred personal equilibrium (PPE) from (Kőszegi

and Rabin, 2006), we also consider choice-acclimating personal equilibrium (CPE) (Kőszegi

and Rabin, 2007), which is widely applied in real-effort settings (Abeler et al., 2011; Campos-

Mercade et al., 2024).

Notation

• Stopping yields the lottery S(∆, r) ≡
(
1
2
,∆; 1

2
, r
)
.
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• Working more yields W(∆, r, b, c) ≡
(
1
2
,∆+ b; 1

2
, r
)
at cost c.

As detailed in Section 2.1, ∆, r, b, c are randomised across questions. Each subject encounters

the same (b, c) set, and ∆, r, b, c are jointly independent.

Assumption: narrow bracketing We assume subjects evaluate each choice in isolation

instead of combining all 50 choices into one meta money-plus-effort lottery. Pooling would

attenuate responses to the common payment r and the effort payment ∆. For instance, if

the round-t reference point were the “lagged expectation”—the distribution of pay-offs from

the previous t − 1 rounds—then r would have zero direct effect because the reference is in-

dependent of the current choice set. Even if the current pay-off were immediately folded into

that expectation, its weight would quickly diminish (e.g. below 10% after ten rounds), and the

marginal-utility change from ∆ to ∆ + b would be smoothed away.

2.2.2 Choice-Acclimating Personal Equilibrium (CPE)

The CPE utility of S(∆, r) is

UCPE

(
S(∆, r)

)
=

1

2
r +

1

2
∆ + η

1− λ

4
φ
(
|∆− r|

)
.

The CPE utility of W(∆, r, b, c) is

UCPE

(
W(∆, r, b, c)

)
=

1

2
r +

1

2
∆ +

1

2
b+ η

1− λ

4
φ
(
|∆+ b− r|

)
− c.

A decision maker prefers to work more under CPE iff

UCPE

(
W(∆, r, b, c)

)
≥ UCPE

(
S(∆, r)

)
⇐⇒ 1

2
b−c+η

1− λ

4

(
φ
(
|∆+b−r|

)
−φ
(
|∆−r|

))
> 0.

Figure 8 provides numerical examples of the utility difference between stopping and working

more. We set the effort cost to $1. Assuming linear consumption utility for small stakes (slope

normalised to 1), the utility difference equals the certainty-equivalent difference.

Proposition 5 (Contour-line prediction) If

UCPE

(
W(∆, r, b, c)

)
≥ UCPE

(
S(∆, r)

)
,
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Figure 8: Visualization of Proposition 6

Note: The figure plots MCPE(x) for b = 2.05 and c = 1. “Constant” refers to constant sensitivity; “Diminishing” to diminishing
sensitivity. λ denotes loss-aversion strength. For diminishing sensitivity we use a power utility with exponent 0.7.

then for every real x,

UCPE

(
W(∆ + x, r + x, b, c)

)
≥ UCPE

(
S(∆ + x, r + x)

)
.

Proof. Adding the same constant x to both monetary outcomes of a lottery shifts each payoff

up by x in every state. Hence

UCPE

(
W(∆+x, r+x, b, c)

)
= x+UCPE

(
W(∆, r, b, c)

)
, UCPE

(
S(∆+x, r+x)

)
= x+UCPE

(
S(∆, r)

)
.

Subtracting the common x from both sides yields

x+ UCPE

(
W(∆, r, b, c)

)
≥ x+ UCPE

(
S(∆, r)

)
⇐⇒ UCPE

(
W(∆, r, b, c)

)
≥ UCPE

(
S(∆, r)

)
,

which is exactly the initial assumption. Therefore the inequality is preserved for any x.

Proposition 6 (Shape of propensity curve) Let

MCPE(x) ≡ UCPE

(
W(r + x, r, b, c)

)
− UCPE

(
S(r + x, r)

)
.
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Then:

1. If λ > 1, MCPE(x) increases (is flat) on (−∞, 0] under diminishing (constant) sensitiv-

ity, decreases on [−b, 0], and increases—flattening out under diminishing sensitivity—on

[0,∞).

2. If λ < 1, MCPE(x) decreases (is flat) on (−∞, 0] under diminishing (constant) sensitiv-

ity, increases on [−b, 0], and decreases—flattening out under diminishing sensitivity—on

[0,∞).

3. For any λ ̸= 1, y ∈ [−b, 0] and x /∈ [−b, 0], |M′
CPE(y)| > |M′

CPE(x)|.

Proof. We have MCPE(x) =
1
2
b− c+ η 1−λ

4

(
φ(|x+ b|)− φ(|x|)

)
. Consider three ranges for x:

• x < −b: With constant sensitivity φ(|x + b|) − φ(|x|) is constant; with diminishing

sensitivity it is negative and decreasing.

• −b < x < 0: φ(|x+ b|)− φ(|x|) is increasing.

• x > 0: With constant sensitivity it is constant; with diminishing sensitivity it is positive,

decreasing, and flattens out.

The sign of M′
CPE(x) therefore depends on (1− λ). For x > 0 and −b < y < 0,

|M′
CPE(y)| = φ′(b+ y) + φ′(−y) > φ′(b+ x)− φ′(x) = |M′

CPE(x)|.

A similar inequality holds when x < −b.

Proposition 6 shows that MCPE(x) flattens when ∆ is far from r and is most sensitive for

∆− r ∈ [−b, 0]. Figure 8 illustrates these patterns numerically.

2.2.3 Preferred Personal Equilibrium (PPE) - Working More

There are two key differences between PPE and CPE:

1. PPE is defined at the choice-set level. In what follows we assume the equilibrium is

defined at the question level.
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2. Because PPE involves a two-step decision rule, the link between the utility difference of

two options and choice probability is less direct. In this subsection we therefore focus only

on the condition under which working more, W(∆, r, b, c), constitutes a PPE for given

(µ,∆, r, b, c), without mapping utility differences to probabilities.

The definition of PPE is based on the notion of personal equilibrium (PE).

Working more is a PE iff

UPE(W(∆, r, b, c)|W(∆, r, b, c)) ≥ UPE(S(∆, r))|W(∆, r, b, c)) ⇐⇒
1

2
b− c+

1

4
µ(∆− r + b)− 1

4
µ(∆− r)− 1

4
µ(−b) ≥ 0

Let PW be the set of (∆, r, b, c, µ) for which working more is a PE.

Stopping is not a PE iff

UPE(W(∆, r, b, c)|S(∆, r))) > UPE(S(∆, r))|S(∆, r)) ⇐⇒
1

2
b− c+

1

4
µ(∆− r + b)− 1

4
µ(∆− r)− 1

4
µ(b) ≥ 0

Let us use PS to denote the set of (∆, r, b, c, µ) such that stopping is not a PE.

Finally, let us use PC to denote the set of (∆, r, b, c, µ) such that working more is a CPE.

Let P = {(∆, r, b, c, µ)|Working more is PPE}, then by definition

P = PW ∩ (PS ∪ PC)

It becomes obvious that the contour line prediction holds:

Proposition 7 (Contour-line prediction) If (∆, r, b, c, µ) ∈ P, then for any x, (∆+x, r+

x, b, c, µ) ∈ P.

Proof. Based on the proof of Proposition 5, as well as the observation that (∆, r, b, c, µ) ∈

PS ⇐⇒ (∆ + x, r + x, b, c, µ) ∈ PS and (∆, r, b, c, µ) ∈ PC ⇐⇒ (∆ + x, r + x, b, c, µ) ∈ PC,

the prediction holds.
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To characterize the propensity to work more, define X (x) ≡ {(c, µ)|(r + x, r, b, c, µ) ∈ P}.

Here (c, µ) can be interpreted as subject-level heterogeneity or choice-level decision noise. A

larger X (x) means that working more is more likely to be PPE.

With conventional functional forms, the predictions from PPE is similar to that of CPE:

Proposition 8 (Shape of the ∆ − r curve) X (x) decreases in [− b
2
, 0] if all elements in

the set of µ satisfy one of the following conditions:

1. λ > 1.

2. λ = 1 and diminishing sensitivity.

Proof.

Working more is a PE iff

UPE(W(r + x, r, b, c)|W(r + x, r, b, c)) ≥ UPE(S(r + x, r))|W(r + x, r, b, c)) ⇐⇒
1

2
b− c+

1

4
µ(x+ b)− 1

4
µ(x)− 1

4
µ(−b) ≥ 0

Stopping is not a PE iff

UPE(W(r + x, r, b, c)|S(r + x, r))) > UPE(S(r + x, r))|S(r + x, r)) ⇐⇒
1

2
b− c+

1

4
µ(x+ b)− 1

4
µ(x)− 1

4
µ(b) ≥ 0

When x ∈ [− b
2
, 0], µ(x + b) − µ(x) decreases with either diminishing sensitivity or loss

aversion. Therefore, for any given r and b, both PW and PS decreases in x. From Proposition

6 we also know that PC decreases in x. Therefore X (x) decreases.

Proposition 8 indicates that the propensity to work more falls most steeply when ∆ − r ∈

[−b, 0], mirroring the CPE result.

2.2.4 Preferred Personal Equilibrium (PPE) – Stopping

The derivation mirrors the previous subsection, except that all inequality directions are

reversed; consequently, the contour-line prediction still holds.
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Stopping is a PE iff

UPE

(
W(∆, r, b, c) | S(∆, r)

)
≤ UPE

(
S(∆, r) | S(∆, r)

)
⇐⇒ 1

2
b− c +

1

4
µ(∆− r + b)− 1

4
µ(∆− r)− 1

4
µ(b) ≤ 0.

Working more fails to be a PE iff

UPE

(
W(∆, r, b, c) | W(∆, r, b, c)

)
≤ UPE

(
S(∆, r) | W(∆, r, b, c)

)
⇐⇒ 1

2
b− c +

1

4
µ(∆− r + b)− 1

4
µ(∆− r)− 1

4
µ(−b) ≤ 0.

Let Pstop
W , Pstop

S , and Pstop
C denote the analogues of PW , PS , and PC for the stopping option.

From Proposition 8, each of these sets increases in ∆− r over the interval [−b, 0]. Thus, when

∆−r rises within [−b, 0], the condition for choosing W(∆, r, b, c) becomes progressively tighter,

leading to qualitatively identical predictions for behavior.

2.2.5 Bell–Loomes–Sugden (BLS)

Although originally not intended for the domain of labour supply, we extend the model

of disappointment aversion (Bell, 1985; Loomes and Sugden, 1986). We adopt their utility

formulation for the lottery and assume that effort cost is additively separable. With disap-

pointment–elation utility µ(x) (setting η = 1), the BLS utility of S(∆, r) is

UBLS

(
S(∆, r)

)
=

1

2
r +

1

2
∆ +

1

2
µ
(
1
2
(r −∆)

)
+

1

2
µ
(
1
2
(∆− r)

)
.

The BLS utility of W(∆, r, b, c) is

UBLS

(
W(∆, r, b, c)

)
=

1

2
r +

1

2
∆ +

1

2
b+

1

2
µ
(
1
2
(r −∆− b)

)
+

1

2
µ
(
1
2
(∆ + b− r)

)
− c.

Proposition 9 (Contour-line prediction) If UBLS

(
W(∆, r, b, c)

)
≥ UBLS

(
S(∆, r)

)
, then

for any x,

UBLS

(
W(∆ + x, r + x, b, c)

)
≥ UBLS

(
S(∆ + x, r + x)

)
.

Proof. Because UBLS

(
W(∆ + x, r + x, b, c)

)
= x + UBLS

(
W(∆, r, b, c)

)
and UBLS

(
S(∆ +

26



x, r + x)
)
= x + UBLS

(
S(∆, r)

)
, the stated inequality is equivalent to UBLS

(
W(∆, r, b, c)

)
≥

UBLS

(
S(∆, r)

)
.

Let

M(x) = UBLS

(
W(r + x, r, b, c)

)
− UBLS

(
S(r + x, r)

)
.

Proposition 10 (Shape of the ∆ − r curve) For x ∈ [−b, 0]:

1. If λ > 1, then M(x) decreases.

2. If λ = 1, then M(x) is constant.

Proof. Within x ∈ [−b, 0],

M(x) =
1

2
b+

1− λ

2

[
φ
(
1
2
(x+ b)

)
− φ
(
−1

2
x
)]
.

Because φ is increasing and, under diminishing sensitivity, concave:

• φ
(
1
2
(x+ b)

)
− φ
(
−1

2
x
)
rises with x on [−b, 0];

• thus, when λ > 1, the coefficient 1− λ < 0 implies M(x) decreases;

• when λ = 1, the term in brackets is multiplied by zero, so M(x) is constant.

Proposition 10 therefore predicts that, under standard parameter values, the marginal

propensity to work more falls whenever −b < ∆− r < 0.

2.2.6 Common Payment as Referent

Assume monetary utility is reference-dependent: a payoff o yields ϕ(o−r), where ϕ(·) shares

the form of µ(·) with η = 1.

UFP

(
S(∆, r)

)
=

1

2
ϕ(∆− r), UFP

(
W(∆, r, b, c)

)
=

1

2
ϕ(∆ + b− r)− c.

Hence W(∆, r, b, c) is preferred to S(∆, r) iff

1

2
ϕ(∆ + b− r)− 1

2
ϕ(∆− r)− c ≥ 0.
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Proposition 11 (Contour-line prediction) If UFP

(
W(∆, r, b, c)

)
≥ UFP

(
S(∆, r)

)
, then for

any x,

UFP

(
W(∆ + x, r + x, b, c)

)
≥ UFP

(
S(∆ + x, r + x)

)
.

Proof. Because UFP

(
W(∆+x, r+x, b, c)

)
= x+UFP

(
W(∆, r, b, c)

)
and UFP

(
S(∆+x, r+x)

)
=

x+ UFP

(
S(∆, r)

)
, the inequality with offset x holds exactly when the original inequality does.

2.3 Data Analysis

2.3.1 Average Derivative Test

Propositions 5, 7, 9 and 11 show that various forms of expectation-based formulations imply

Π(∆, r) ≡ E[W(∆, r, b, c) ≻ S(∆, r) | ∆, r] = g(∆− r).

Hence ∂Π(∆, r)/∂∆ = − ∂Π(∆, r)/∂r. As in Section 1.3.1, the Stata command npregress

kernel fits the conditional choice probability non-parametrically with an Epanechnikov ker-

nel, selects the bandwidth that minimises integrated mean-squared error and reports average

marginal effects together with a cluster-bootstrap covariance matrix. Each observation is a

subject’s response to one question. The dependent variable indicates W(∆, r, b, c) ≻ S(∆, r);

the regressors are ∆ and r. Let β̂∆ and β̂r denote their average marginal effects. We test the

null hypothesis β̂∆ + β̂r = 0:

• If the null is not rejected, we test whether β̂∆ and β̂r individually differ from zero. Sig-

nificant effects strengthen the interpretation that failure to reject indicates reference de-

pendence; insignificant effects may reflect no influence or a non-monotonic response, to

be examined in Sections 2.3.2 and 2.3.3.

• If the null is rejected, none of the explored expectation-based models (CPE, PPE for

both options, BLS, common-payment reference) explains the aggregate behavior. We

then evaluate
β̂∆ + β̂r

|β̂∆|+ |β̂r|
,
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which lies in [−1, 1] as the denominator is positive. Values between −0.2 and 0.2 are

labelled approximately reference dependent. The estimated weights are used to test the

single-index specification g(β̂∆∆+ β̂rr) in Section 2.3.3.

2.3.2 Graphical Analysis

The graphical diagnostics mirror those in Section 1.3.2:

1. Contour-line plot. Using npregress kernel with regressors ∆ and r (as in Sec-

tion 2.3.1), we estimate the conditional choice probability and graph its level sets with

twoway contour. ∆ is placed on the y-axis and r on the x-axis. Propositions 5, 7, 9,

and 11 predict that, if r is the true reference point, the contour lines should appear as

diagonals with slope 1 (i.e. 45-degree lines).

2. Choice probability curve. We plot the estimated conditional choice probability against

∆−r using twoway lpolyci with its default bandwidth (which minimises the conditional

weighted mean integrated squared error). Propositions 6, 8, and 10 predict that, under

standard functional forms, the propensity to choose the higher-workload option decreases

as ∆− r increases.

2.3.3 Fan and Li (1996) Specification Test

Following the discussion in Section 2.3.1, the specification to be tested depends on the

outcome of the average-derivative test:

• If the hypothesis β̂∆ + β̂r = 0 is not rejected, we conduct the standard specification test

(reference-dependent formulation): there exists a non-constant function g(·) such that

E[W(∆, r, b, c) ≻ S(∆, r) | ∆, r] = g(∆− r).

• If the hypothesis β̂∆ + β̂r = 0 is rejected, we apply an estimation-adjusted specification

test: there exists a non-constant function g(·) such that

E[W(∆, r, b, c) ≻ S(∆, r) | ∆, r] = g
(
β̂∆∆+ β̂rr

)
,
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where β̂∆ and β̂r are the average-derivative estimates from Section 2.3.1.

Details specific to this experiment are set out below. The general procedure is given in

Section 4.2.

Bandwidth scale parameters κ12 (for the unrestricted two-dimensional nonparamet-

ric function)

• For the ∆ dimension: bandwidth scale = 1.5× sd(∆).

• For the r dimension: bandwidth scale = 1.5× sd(r).

Bandwidth scale parameters κ11 and κ2 (for the restricted single-index function)

• Single-index dimension ∆− r: bandwidth scale = 1.5× sd(∆− r).

2.3.4 Heterogeneity Analysis

Figure 9: Numerical example of responses to r and ∆

(a) Common payment (b) Effort payment

Note: Each panel shows the distribution of responses to the common payment r and the effort payment ∆, respectively. The pink

region marks ∆ < r < ∆+ b. The parameter λ measures loss aversion (λ > 1) or gain seeking (λ < 1). The curve labelled

“diminishing sensitivity” is generated by a power reference-dependent utility function with exponent 0.7.

The common intuition behind expectation-based reference dependence is that choices de-

pend on comparing pairs of monetary outcomes. This comparison implies that the response to
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a shock in the common payment r should be the exact opposite of the response to a shock in

the effort payment ∆, as illustrated in Figure 9.

These comparative statics allow us to test expectation-based reference dependence at the

individual level. For each subject we estimate

1
(
W(∆, r, b, c) ≻ S(∆, r)

)
= βr r + β∆∆+ u,

where β̂r and β̂∆ are the individual OLS estimates. We abbreviate expectation-based refer-

ence dependence as EBRD.

• If β̂r ≥ 5%, classify subjects as follows:

– Those with β̂∆ < 0 are “expectation-based loss-averse”.

– Those with β̂∆ ≥ 0 are “non-EBRD”.

• If β̂r ≤ −5%, classify subjects as follows:

– Those with β̂∆ > 0 are “expectation-based gain-seeking”.

– Those with β̂∆ ≤ 0 are “non-EBRD”.

3 Analysis Plan of Binary Lottery Choice

3.1 Experimental Design

The third experiment has two arms: Plain and Contingent. Both arms present mathemati-

cally identical lottery choices. In Plain, each lottery is simple—the outcome is determined solely

by a die roll. In Contingent, one lottery remains simple while the other becomes compound:

the simple option’s risk is resolved by a die roll, whereas the compound option’s risk is resolved

first by a die roll and, in certain cases, by an additional coin flip. This arm is called Contingent

because the design separates contingencies in which the coin flip is inconsequential (a common

consequence) from those in which flipping the coin affects payoffs.

3.1.1 Basic Setup

Subjects face 50 binary choices between two lotteries.
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• A two-outcome lottery, L2(∆, r), pays r with probability 1/3 and ∆ with probability 2/3.

• A three-outcome lottery, L3(∆, r, k, k̄), pays r with probability 1/3, ∆−k with probability

1/3, and ∆ + k̄ with probability 1/3.

Data-generating process.

• Choices 1–40.

∆ = s∆ + u∆, s∆ ∼ U [7.5, 12.5], u∆ ∼ N(0, 0.252);

r = sr + ur, sr ∼ U [5.5, 14.5], ur ∼ N(0, 0.252).

For choice i (1 ≤ i ≤ 40):

k =

2 if i is odd,

1.5 if i is even,

k̄ =
(
0.8 + ⌊(i− 1)/5⌋ · 0.1

)
k.

note that ⌊x⌋ denotes the greatest integer less than or equal to x.

• Choices 41–50. The parameters are fixed as

∆⃗ = (13, 13, 10, 10, 10.5, 10.5, 13.5, 13.5, 10, 10),

r⃗ = (8, 11, 5, 8, 6, 9, 9, 12, 12, 15),

k⃗ = (−2,−2,−2,−2,−1.5,−1.5,−1.5,−1.5,−2,−2),

⃗̄k = (2, 2, 2, 2, 1.5, 1.5, 1.5, 1.5, 2, 2),

where the parameters for choice i (41 ≤ i ≤ 50) are taken from the (i− 40)-th element of

each vector.

The 50 choices are shown in random order to every subject; the numbering above is used

only for analysis and does not affect the display sequence.
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3.1.2 Interface and Decision - Plain

The risk is generated by a fair die. For L2(∆, r), it pays ∆ if the die is one, two, five, or

six; it pays r if the die is three or four. For L3(∆, r, k, k̄), it pays ∆− k if the die is one or two;

it pays r if the die is three or four; it pays ∆ + k̄ if the die is five or six. Figure 10a presents

such an example interface. In this example, r = 13.03, ∆ = 9.35, ∆+ k̄ = 11.95, ∆− k = 7.35.

3.1.3 Interface and Decision — Contingent

Figure 10: Example interface for binary-lottery choice

(a) Plain arm (b) Contingent arm

Note: Left—example interface for the Plain arm. Right—example interface for the Contingent arm.

Risk is resolved by a fair die and, for one lottery, an additional coin flip.

• Simple lottery L2(∆, r) (coin not involved):

– Die = 1, 2, 5, or 6 → payoff ∆.

– Die = 3 or 4 → payoff r.

• Compound lottery L3(∆, r, k, k̄) (die + coin):
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– Die = 3 or 4 → payoff r (coin outcome irrelevant).

– Die = 1, 2, 5, or 6:

∗ Coin = Heads → payoff ∆ + k̄.

∗ Coin = Tails → payoff ∆− k.

Figure 10b shows an example with r = 9.90, ∆ = 7.86, ∆ + k̄ = 10.06, and ∆− k = 5.86.

3.2 Theoretical Analysis

3.2.1 Choice-Acclimating Personal Equilibrium (CPE)

UCPE

(
L2(∆, r)

)
=

2

3
∆ +

1

3
r + η

(
2

9
µ(∆− r) +

2

9
µ(r −∆)

)
.

UCPE

(
L3(∆, r, k, k̄)

)
=

2

3
∆ +

1

3
r +

1

3
(k̄ − k)

+ η
[
1
9
µ(∆− k − r) + 1

9
µ(r −∆+ k) + 1

9
µ(k̄ − k) + 1

9
µ(k − k̄)

+ 1
9
µ(∆ + k̄ − r) + 1

9
µ(r −∆− k̄)

]
.

Proposition 12 (Contour-line prediction) If

UCPE

(
L3(∆, r, k, k̄)

)
≥ UCPE

(
L2(∆, r)

)
,

then for every real x,

UCPE

(
L3(∆ + x, r + x, k, k̄)

)
≥ UCPE

(
L2(∆ + x, r + x)

)
.

Proof. Because adding the same constant x to both monetary outcomes of a lottery increases

the overall payoff by x in every state, the CPE utility satisfies

UCPE

(
L3(∆ + x, r + x, k, k̄)

)
= x+ UCPE

(
L3(∆, r, k, k̄)

)
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and

UCPE

(
L2(∆ + x, r + x)

)
= x+ UCPE

(
L2(∆, r)

)
.

Hence

UCPE

(
L3(∆ + x, r + x, k, k̄)

)
≥ UCPE

(
L2(∆ + x, r + x)

)
⇐⇒ x+ UCPE

(
L3(∆, r, k, k̄)

)
≥ x+ UCPE

(
L2(∆, r)

)
⇐⇒ UCPE

(
L3(∆, r, k, k̄)

)
≥ UCPE

(
L2(∆, r)

)
,

which is exactly the hypothesis. Therefore the inequality is preserved for every x.

Utility difference. Define

R(x) = UCPE

(
L3(r + x, r, k, k̄)

)
− UCPE

(
L2(r + x, r)

)
.

Proposition 13 (Shape of the ∆ − r curve) Let kmin = min{k̄, k}.

1. With constant sensitivity and λ > 1, R(x) decreases on [−kmin, 0] and increases on

[0, kmin].

2. With constant sensitivity and λ < 1, R(x) increases on [−kmin, 0] and decreases on

[0, kmin].

3. With diminishing sensitivity and λ > 1, R(x) decreases on
[
−kmin

2
, 0
]
and increases on[

0, kmin

2

]
.

4. With diminishing sensitivity and λ < 1, R(x) increases on
[
−kmin

2
, 0
]
and decreases on[

0, kmin

2

]
.

Proof.

R(x) =
1

3
(k̄ − k) + η

1− λ

9

[
φ(|k̄ − k|) + φ(|x+ k̄|) + φ(|x− k|)− 2φ(|x|)

]
.

Constant sensitivity. The first two terms are constant in x; the sign of the derivative is

driven solely by −(1− λ)φ(|x|), producing a “V” shape for λ > 1 and a hump for λ < 1.

Diminishing sensitivity. For |x| ≤ kmin/2, φ
′(|x|) dominates the other slopes, so the deriva-

tive again has the sign of −(1− λ)φ′(|x|), yielding the stated comparative statics.
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Figure 11: Visualization of Proposition 13

The plot shows R(x) for k̄ = 3 and k = 2. “Constant” denotes constant sensitivity; “Diminishing” denotes diminishing sensitivity.
λ is the loss-aversion parameter. For diminishing sensitivity we use a power function with exponent 0.7. The pink region is
r − k̄ < ∆ < r; the blue region is r < ∆ < r + k.

Proposition 13 implies that, under standard gain–loss utility, CPE predicts the tri-outcome

lottery is less attractive when ∆ is close to r. This parallels Proposition 1 in Kőszegi and

Rabin (2007): a riskier L2(r+ x, r) lowers its own attractiveness and raises the relative appeal

of L3(r + x, r, k, k̄). Notably, the symmetry of CPE implies that even with gain seeking and

diminishing sensitivity R(x) has a kink around x = 0. Figure 11 illustrates these predictions.

3.2.2 Preferred Personal Equilibrium (PPE — “Flipping the Coin”)

Let

P =
{
(µ, k, k̄,∆, r)

∣∣ L3(∆, r, k, k̄) is PPE
}
.

Proposition 14 (Contour-line prediction) If (µ, k, k̄,∆, r) ∈ P, then for any x, (µ, k, k̄,∆+

x, r + x) ∈ P.

Proof. First compute

UPE

(
L3(∆, r, k, k̄) | L2(∆, r)

)
=

2

3
∆ +

1

3
r +

k̄ − k

3

+
2

9
µ(−k) +

2

9
µ(r −∆) +

2

9
µ(k̄)

+
1

9
µ(∆− r − k) +

1

9
µ(∆− r + k̄).
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Stopping as the reference. L2(∆, r) is a PE iff

2

9
µ(∆− r) ≥ k̄ − k

3
+

2

9
µ(−k) +

2

9
µ(k̄) +

1

9
µ(∆− r − k) +

1

9
µ(∆− r + k̄). (1)

Flipping as the reference. L3(∆, r, k, k̄) is a PE iff

k̄ − k

3
+

1

9
µ(∆− k̄ − r) +

1

9
µ(∆ + k − r)

+
1

9
µ(k̄ − k) +

1

9
µ(k − k̄) ≥ 2

9
µ(k) +

2

9
µ(∆− r) +

2

9
µ(−k̄).

(2)

Both inequalities depend only on ∆− r for fixed (µ, k, k̄). Define

P3 =
{
(∆, r, k, k̄, µ) | (2)

}
, P2 =

{
(∆, r, k, k̄, µ) | (1) fails

}
,

and

C3 =
{
(∆, r, k, k̄, µ) | UCPE(L3) ≥ UCPE(L2)

}
.

Because ∆ − r is independent of (µ, k, k̄) and each condition above is a function of ∆ − r, L3

remains a PPE after adding the same x to both ∆ and r. Thus the proposition holds.

Proposition 14 shows that the contour line test is also applicable to PPE concept. If we

interpret µ as a question-varying component that includes decision noises, and the choices are

determined by the PPE at choice level, then the choice probability conditional on ∆ and r is

also a function of ∆− r, since the experimenters vary ∆ and r such that they are independent

of µ, k̄, k.

Define X (x) = {µ|(r + x, r, µ, k̄, k) ∈ SPPE}. Here µ can be interpreted as subject-level

heterogeneity or choice-level decision noise. On the shape of ∆− r curve, we have the following

proposition:

Proposition 15 (Shape of the ∆ − r curve) X (x) decreases in [−min {k̄,k}
2

, 0] if all ele-

ments in the set of µ satisfy one of the following conditions:

1. µ exhibits constant sensitivity and λ > 1.

2. µ exhibits diminishing sensitivity and λ ≥ 1.
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Proof. When one of the condition holds, we have:

∂µ(x)

x
≥ max{∂µ(x− k̄)

∂x
,
∂µ(x− k)

∂x
,
∂µ(x+ k̄)

∂x
,
∂µ(x+ k)

∂x
}

Substitute ∆− r with x in inequality 1, it shows that with as x increases, the left hand side

is increasing at a faster rate than the right hand side. This means that for any given r, k, and

k̄, set P2 decreases in x, holding other components constant.

Similarly, substitute ∆−r with x in inequality 2, the right hand side is increasing at a faster

rate than the left hand side. This means that for any given r, k, and k̄, set P3 decreases in x,

holding other components constant.

According the derivation in Proposition 13, for any given r, k, and k̄, set C3 also decreases

in x, holding other components constant.

Since X (x) = P3 ∩ (P2 ∪ C3), and all sets decrease in x, therefore X (x) decrease in x.

The takeaway from Proposition 15 is that the decrease in [−min {k̄,k}
2

, 0] is preserved under

PPE with conventional functional form assumptions.

3.2.3 Preferred Personal Equilibrium (PPE — “Not Flipping the Coin”)

The algebra is identical to that in the preceding subsection, except that every inequality is

reversed. Consequently, the contour-line prediction still applies.

Reversing the inequalities implies that the counterparts of the sets P2 and P3 for the not-

flipping option L2 are increasing in ∆−r over the interval specified in Proposition 15. Likewise,

the CPE utility inequality reverses direction.

Hence, if we assume that a subject chooses “Flipping the Coin” whenever “Not Flipping”

fails to be a PPE, the condition for choosing “Not Flipping” becomes tighter (harder to satisfy)

as ∆− r increases within [
−min{k̄,k}

2
, 0
]
.

3.2.4 Bell–Loomes–Sugden (BLS)

UBLS

(
L2(∆, r)

)
=

2

3
∆ +

1

3
r +

2

3
µ
(
1
3
∆− 1

3
r
)
+

1

3
µ
(
2
3
r − 2

3
∆
)
.
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UBLS

(
L3(∆, r, k, k̄)

)
=

2

3
∆ +

1

3
r +

k̄ − k

3

+
1

3
µ
(
1
3
∆+ 2

3
k̄ − 1

3
r + 1

3
k
)

+
1

3
µ
(
2
3
r − 2

3
∆− k̄−k

3

)
+

1

3
µ
(
1
3
∆− 2

3
k̄ − 1

3
r − 1

3
k
)
.

UBLS

(
L3(∆, r, k, k̄)

)
≥ UBLS

(
L2(∆, r)

)
⇐⇒ k̄ − k

3
+
1

3
µ
(
1
3
∆+ 2

3
k̄ − 1

3
r + 1

3
k
)
+

1

3
µ
(
2
3
r − 2

3
∆− k̄−k

3

)
+
1

3
µ
(
1
3
∆− 2

3
k̄ − 1

3
r − 1

3
k
)

≥ 2

3
µ
(
1
3
∆− 1

3
r
)
+

1

3
µ
(
2
3
r − 2

3
∆
)
.

(3)

Proposition 16 (Contour-line prediction) If UBLS

(
L3(∆, r, k, k̄)

)
≥ UBLS

(
L2(∆, r)

)
, then

for any real x,

UBLS

(
L3(∆ + x, r + x, k, k̄)

)
≥ UBLS

(
L2(∆ + x, r + x)

)
.

Proof. Adding the constant x to both ∆ and r increases every payoff by x. Therefore

UBLS

(
L3(∆ + x, r + x, k, k̄)

)
= x+ UBLS

(
L3(∆, r, k, k̄)

)
,

UBLS

(
L2(∆ + x, r + x)

)
= x+ UBLS

(
L2(∆, r)

)
,

and the original inequality is preserved after the shift.

Let

RBLS(x) = UBLS

(
L3(r + x, r, k, k̄)

)
− UBLS

(
L2(r + x, r)

)
.

Proposition 17 (Shape of the ∆ − r curve) Suppose k ≤ k̄ < 5k. If either (i) λ > 1

with constant sensitivity, or (ii) λ ≥ 1 with diminishing sensitivity, then RBLS(x) decreases on[
−k, − k̄−k

4

]
.

Proof.

RBLS(x) =
k̄ − k

3
+

1

3
µ
(
1
3
x+ 2

3
k̄ + 1

3
k
)
+

1

3
µ
(
−2

3
x− k̄−k

3

)
+

1

3
µ
(
1
3
x− 2

3
k̄ − 1

3
k
)
− 2

3
µ
(
1
3
x
)
− 1

3
µ
(
−2

3
x
)
.
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Figure 12: Visualization of Proposition 17

The curve plots RBLS(x) with k̄ = 3 and k = 2. “Constant” denotes constant sensitivity; “Diminishing” denotes diminishing
sensitivity. λ is the loss-aversion parameter. For diminishing sensitivity we use a power function with exponent 0.7. Pink shading
marks r − k̄ < ∆ < r; blue shading marks r < ∆ < r + k.

For x ∈ [−k,− k̄−k
2
] we have 0 < −2

3
x− k̄−k

3
< −2

3
x. With constant sensitivity the difference

1
3
µ(−2

3
x− k̄−k

3
)− 1

3
µ(−2

3
x) is constant; with diminishing sensitivity it is decreasing in x.

Moreover, for |x| < min{k̄, k},

∂µ(1
3
x)

∂x
≥ max

{
∂

∂x
µ
(
1
3
x+ 2

3
k̄ + 1

3
k
)
,
∂

∂x
µ
(
1
3
x− 2

3
k̄ − 1

3
k
)}

,

so the bracketed term 1
3
µ(· · · )+ 1

3
µ(· · · )− 2

3
µ(1

3
x) is decreasing in x under diminishing sensitivity,

and also under constant sensitivity when λ > 1. The claimed monotonicity follows.

Proposition 17 shows that, with standard parameter values, the marginal preference for the

tri-outcome lottery drops as long as −k < ∆− r < − k̄−k
4
. Figure 12 illustrates this numerically

and highlights the kink at ∆ = r that is characteristic of gain–loss asymmetry.

3.2.5 Common Payment

The common payment itself serves as a point-wise reference point. In this case L3(∆, r, k, k̄)

is preferred to L2(∆, r) iff

1

3
ϕ(∆+ k̄−r)+

1

3
ϕ(∆−k−r) ≤ 2

3
ϕ(∆−r) ⇐⇒ 1

2
ϕ(∆+ k̄−r)+

1

2
ϕ(∆−k−r) ≤ ϕ(∆−r).
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This setting is mathematically equivalent to choosing between a sure payment and a 50–50

bet when r is an inconsequential point-wise reference. Section 1.2.3 showed that the propensity

to select L3(∆, r, k̄, k) over L2(∆, r) decreases for ∆ ∈
[
r − 1

2
k̄, r + 1

2
k − 1

2
k̄
]
.

Figure 13: Propensity to choose L3 over L2 when the common payment is the reference

The curve plots the certainty-equivalent difference between L3(∆, r, k̄, k) and L2(∆, r) with r as the reference, k̄ = 3, and k = 2.
“Constant” denotes constant sensitivity; “Diminishing” denotes diminishing sensitivity. λ is the loss-aversion parameter. For
diminishing sensitivity we use a power function with exponent 0.7. Pink shading marks r − k̄ < ∆ < r; blue shading marks
r < ∆ < r + k.

Under standard diminishing-sensitivity parameters, the propensity to choose L3 over L2

typically falls as ∆ − r approaches zero: taking an extra gamble is more attractive in the

convex region of the utility function (∆ < r) than in the concave region (∆ > r). Gain–loss

asymmetry moderates this effect, yet even with constant sensitivity the decline at ∆ − r = 0

persists.

3.2.6 Rank Dependence with Inverse-S Probability Weighting

Rank-dependent utility (RDU) with inverse-S weighting— the probability-weighting com-

ponent of cumulative prospect theory (CPT)— is typically viewed as distinct from reference

dependence. An RDU model with reference point zero can be naturally and easily applied to

this setup.

Figure 14 presents a numerical example. Unlike expectation-based reference-dependence

models, RDU predicts that the propensity to choose L3 over L2 rises monotonically in the
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Figure 14: Propensity to choose L3(∆, r, k̄, k) over L2(∆, r)

The curve plots the certainty-equivalent difference between L3(∆, r, k̄, k) and L2(∆, r) with r as the reference, k̄ = 3 and k = 2.
“Constant” denotes constant sensitivity; “Diminishing” denotes diminishing sensitivity. γ is the curvature parameter in the inverse-

S weight w(p) = pγ

pγ+(1−p)γ
. For diminishing sensitivity we use a power utility with exponent 0.7.

shaded region and shows no kink at ∆− r = 0.

Intuitively, L3 is riskier than L2: for the bi-outcome lottery a die roll of 1, 2, 5, 6 yields ∆,

whereas for the tri-outcome lottery the same die outcomes yield either ∆ − k or ∆ + k̄. Thus

the mass on ∆ is split into two events. When ∆ is large, the convex segment of the weighting

function favors this split; when ∆ is small, the concave segment disfavors it.

Outside the shaded region, this effect disappears: Tail independence implies that r ceases

to influence choices once it lies above or below all outcome realizations that vary with ∆.

3.2.7 Disappointment Aversion (Gul, 1991)

Our contour-line approach cannot accommodate the disappointment-aversion model of Gul

(1991), except in the knife-edge case where utility u is linear. More generally, it cannot handle

the broader class of betweenness preferences which, as summarised in Masatlioglu and Raymond

(2016), take the recursive form

VB(f) =
∑
x

ν
(
x, VB(f)

)
f(x),
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Figure 15: Propensity to choose L3(∆, r, k̄, k) over L2(∆, r)

The curve shows the certainty-equivalent difference between L3(∆, r, k̄, k) and L2(∆, r) with r as the reference, k̄ = 3 and k = 2.
“Constant” denotes linear utility; “Diminishing” denotes a power utility with exponent 0.7. β is the disappointment-aversion
parameter in Gul (1991) (β > 1 = disappointment averse, β < 1 = elation seeking). For β = 3 we use the estimate from Camerer
and Ho (1994). Pink shading marks r − k̄ < ∆ < r; blue shading marks r < ∆ < r + k. Certainty equivalents are computed using
the method of Cerreia-Vioglio et al. (2020).

with f(x) the probability of outcome x. Here VB(f) serves both as the reference point for

evaluating x and as the certainty equivalent of the lottery, so ∆ and r cannot be separated

analytically.

Nevertheless, since the model is designed for lottery choice, we examine its implications

numerically. Figure 15 shows that, as in expectation-based reference-dependence models, the

propensity to choose L3 dips when ∆− r is near zero.

3.3 Data Analysis

3.3.1 Average Derivative Test

Propositions 12, 14 and 16 imply that expectation-based reference dependence yields

Π(∆, r) ≡ E
[
L3(∆, r, k, k̄) ≻ L2(∆, r) | ∆, r

]
= g(∆− r),

so that ∂Π(∆, r)/∂∆ = − ∂Π(∆, r)/∂r.

As in Section 1.3.1, we estimate the conditional choice probability with npregress kernel

(Epanechnikov kernel; bandwidth chosen to minimise integrated MSE) and obtain cluster-
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bootstrap covariances. Each observation is a subject’s choice in one question; the dependent

variable equals 1 if L3 ≻ L2. Regressors are ∆ and r. Let β̂∆ and β̂r be their average marginal

effects. We test the null

β̂∆ + β̂r = 0.

• If the hypothesis β̂∆ + β̂r = 0 is not rejected, we next test β̂∆ ̸= 0 and β̂r ̸= 0 separately.

Significant coefficients support a reference-dependent interpretation; insignificant ones

may indicate no influence or a masked, non-monotonic response, to be explored in Sections

3.3.2 and 3.3.3.

• If the hypothesis β̂∆ + β̂r = 0 is rejected, none of the examined expectation-based mod-

els—CPE, PPE (for both lotteries), BLS, or common-payment reference—account for

aggregate behavior. We evaluate
β̂∆ + β̂r

|β̂∆|+ |β̂r|
,

which lies in [−1, 1] when the denominator is positive. Values in [−0.2, 0.2] are tagged

approximately reference dependent. These weights define the single-index g(β̂∆∆+ β̂rr)

to be tested in Section 3.3.3.

3.3.2 Graphic Analysis

Two graphical diagnostics parallel those in Section 1.3.2:

1. Contour-line plot. Using npregress kernel with regressors ∆ (plotted on the y-axis)

and r (plotted on the x-axis), we estimate the conditional choice probability and display

its level sets with twoway contour. Propositions 12, 14 and 16 imply that, if r is the

correct reference point, the contour lines should trace diagonals with slope 1 (45-degree

lines).

2. Probability curve. We plot the estimated choice probability against ∆−r using twoway

lpolyci with its default bandwidth (which minimises conditional weighted mean inte-

grated squared error). Propositions 13, 15 and 17 predict that, under standard functional

forms, the propensity to choose the tri-outcome lottery decreases in at least some range

when ∆− r < 0. Sections 3.2.5 and 3.2.7 show that other expectation-based models yield
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similar qualitative patterns. By contrast, rank-dependent utility (Section 3.2.6) predicts

a sharp increase when ∆ + k̄ < r < ∆ − k (tail independence) and little change outside

that interval. If the curve visually supports tail independence, we will test it formally in

Section 3.3.5.

3.3.3 Fan and Li (1996) Specification Test

As noted in Section 3.3.1, the specification we test depends on the outcome of the average-

derivative test:

• Hypothesis β̂∆+ β̂r = 0 is not rejected. We run the standard specification test: there

exists a non-constant function g(·) such that

E
[
L3(∆, r, k, k̄) ≻ L2(∆, r) | ∆, r

]
= g(∆− r).

• Hypothesis β̂∆+ β̂r = 0 is rejected. We apply an estimation-adjusted test: there exists

a non-constant function g(·) such that

E
[
L3(∆, r, k, k̄) ≻ L2(∆, r) | ∆, r

]
= g
(
β̂∆∆+ β̂r r

)
,

where β̂∆ and β̂r are the average-derivative estimates from Section 3.3.1.

Implementation details specific to this experiment appear below. The general procedure is

provided in Section 4.2.

Bandwidth scale parameters κ12 (for the unrestricted two-dimensional nonparamet-

ric function)

• ∆-dimension: bandwidth scale = 1.5× sd(∆).

• r-dimension: bandwidth scale = 1.5× sd(r).

Bandwidth scale parameters κ11 and κ2 (for the restricted single-index function)

• Single-index dimension ∆− r: bandwidth scale = 1.5× sd(∆− r).
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3.3.4 Heterogeneity Analysis

To probe expectation-based reference dependence at the individual level, we estimate for

each subject

1
(
L3(∆, r, k, k̄) ≻ L2(∆, r)

)
= β+ 1(∆− r ≥ 0) (∆− r) + β− 1(∆− r < 0) (∆− r) + u,

where β+ captures the slope when the gain component (∆− r) is non-negative and β− the

slope in the loss region.

Classification rule (EBRD = expectation-based reference dependence).

• β− ≤ −5% and β+ ≥ 5%: EBRD-loss-averse.

• β− ≥ 5% and β+ ≤ −5%: EBRD-gain-seeking.

• −5% < β− < 5% and −5% < β+ < 5%: EBRD-loss-neutral.

• β− ≥ 5% and β+ ≥ 5%: pattern consistent with reference dependence or inverse-S

probability-weighting under linear utility. For these subjects we test tail-independence.

3.3.5 Tail Independence

As noted in Section 3.1.1, the paired questions 41 vs. 42, 43 vs. 44, 45 vs. 46, and 47 vs.

48 place the common payment r below every outcome that varies with ∆. This configuration

provides a direct test of tail independence. Pooling these eight observations per subject, we

estimate

1
(
L3(∆, r, k, k̄) ≻ L2(∆, r)

)
= β 1(Odd question) + Question-pair FE + Display-order FE + u,

where

• 1(Odd question) equals 1 for questions 41, 43, 45, 47 (odd numbers) and 0 for 42, 44, 46,

48; within each pair the odd question has the larger value of ∆− r.

• Question-pair FE is a set of dummies for the four pairs (41–42, 43–44, 45–46, 47–48).
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• Display-order FE controls for the position in which a question appeared to the subject.

Tail independence predicts that β = 0.

Subject-level check. For each subject, we also compare choices within every pair (41 vs.

42), (43 vs. 44), (45 vs. 46), (47 vs. 48) and, in addition, (49 vs. 50).3 If tail independence

holds, responses should be identical within each pair, because r lies outside the support of the

outcomes that vary with ∆.

4 Econometric Test

The consistent specification test of Fan and Li (1996) is not implemented in common

statistical software such as Stata. Below we outline its purpose and the procedure for applying

it.

4.1 Purpose

The test assesses whether an estimated choice probability—e.g. selecting the risky option

in the investment game, choosing to work more in the effort task, or opting for the tri-outcome

lottery—follows a specific structure when expressed as a function of experimentally manipulated

variables.

Let Π(∆̃, r̃) denote the choice probability conditional on ∆̃ and r̃, where ∆̃ is the shock to

the outcome and r̃ is the shock to the benchmark (reference point). For any coefficients β∆̃ and

βr̃ the test evaluates

Hypothesis 1 There exists a function g(·) such that

Π(∆̃, r̃) = g
(
β∆̃∆̃ + βr̃r̃

)
.

As shown in Fan and Li (1996), g(·) is unrestricted apart from mild regularity conditions

(e.g. continuity). Because the two covariates enter only through the linear index β∆̃∆̃ + βr̃r̃,

this specification is termed a single-index model.

The same framework checks whether the fitted relationship is merely flat:

3Pair 49–50 is excluded from the aggregate regression because the regression focuses on testing when ∆ > r.
At the individual level we include it to boost power and capture heterogeneity.
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Hypothesis 2 The function

g(x) ≡ E
[
Π(∆̃, r̃)

∣∣∣ β∆̃∆̃ + βr̃r̃ = x
]

is constant.

If Hypothesis 1 is not rejected but Hypothesis 2 is, we conclude that a non-trivial (non-

constant) single-index representation explains the data.

4.2 Procedure

Step 1: Determine the dependent variable and the regressors ∆̃ and r̃. In the

investment game, the dependent variable is an indicator for choosing the risky option. The

regressors ∆̃ and r̃ represent the cumulative shocks to the sure payment (outcome) and to the

hypothesized reference point, as detailed in Sections 1.2.2 and 1.3.1. In the effort task, the

dependent variable is an indicator for choosing to transcribe additional tasks. The regressors

∆̃ and r̃ correspond to the shocks to effort payment and common payment, respectively, as

described in Sections 2.1 and 2.3.1. In the binary-lottery experiment, the dependent variable

is an indicator for choosing the tri-outcome lottery. Here, ∆̃ and r̃ correspond to the variables

∆ and r defined in Sections 3.1.1 and 3.3.1.

Step 2: Obtain Estimates for Average Marginal Effect β∆ and βr. We use the average-

derivative estimates produced by Stata’s npregress kernel.4 The command setup is given in

the earlier sections. Denote the estimates by β̂∆ and β̂r.

Step 3: Test the specification. If the hypothesis β̂∆ + β̂r = 0 is not rejected, test the

specification Π(∆̃, r̃) = g(∆̃− r̃). If the hypothesis β̂∆+ β̂r = 0 is rejected, test the specification

Π(∆̃, r̃) = g(β̂∆∆̃ + β̂rr̃). The test requires bandwidths for Gaussian kernels:

• Stage 1 (testing Hypothesis 1):

– Single-index (1-dimensional) bandwidth: κ11N
−0.35

4See Li et al. (2003) for technical properties of the estimation.
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– Unrestricted (2-dimensional) bandwidth: κ12N
−0.45

Here, N is the total number of observations (one row per subject–choice pair) included in

the test. The scale parameters κ11 and κ12 are specified separately for each experiment

in Sections 1.3.3, 2.3.3, and 3.3.3.

• Stage 2 (testing Hypothesis 2):

Bandwidth = κ2N
−0.5

The scale parameter κ2 is likewise set as specified in the same sections.

Let T1 and T2 denote the test statistics for Hypotheses 1 and 2, respectively. Under the

null, the distributions of T1 and T2 are asymptotically normal, allowing us to compute p-values.

Step 4: Interpret the test results together with β̂∆ and β̂r.

• Reference-point confirmed. Fail to reject Hyp. 1, reject Hyp. 2, and fail to reject

β̂∆ + β̂r = 0. Conclusion: the hypothesized referent is correctly specified.

• Single-index holds, but not exact reference dependence. Fail to reject Hyp. 1,

reject Hyp. 2, and reject β̂∆ + β̂r = 0. A single-index structure fits, but deviates from

pure reference dependence; quantify the deviation as in Section 1.3.1, 2.3.1, 3.3.1.

• Single-index rejected or trivial. Either reject Hyp. 1 (no single-index structure) or

fail to reject Hyp. 2 (index yields a constant). The choice pattern cannot be captured by

the proposed covariates in a meaningful single-index form.
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