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1 Introduction

Predictive Al tools have recently matched or surpassed human performance across numerous domains [Liu
et al., 2019, Lai et al., 2021, Mullainathan and Obermeyer, 2019, Kleinberg et al., 2017, Agrawal et al., 2018].
Yet, in a number of settings, there may be value from collaboration between humans and AT tools, particularly
if humans have access to alternative sources of information [Agarwal et al., 2023]. This possibility motivates
the design of collaboration systems that can improve performance over a “human-only” or an “Al-only”
system by fully taking advantage of all available information.

Such a design should be based not only on the relative performance of human and AI predictions,
but also on how potential human biases and incentives to exert effort in response to Al assistance affect
performance. Existing empirical approaches to designing human-Al collaboration typically abstract away

1 One approach for accounting for these changes is to run experiments

from these endogenous responses.
under various designs, which is prohibitively expensive given the large number of potential designs. Another
approach would be to build a structural model of behavior with built-in assumptions about how humans
respond to the design.

We take a third approach based on a new sufficient statistic that can be used to design human-Al
collaboration. Our theoretical framework is outlined in section 2. It characterizes the optimal design of
human-AT collaboration when it is possible to automate certain cases or to partially withhold Al-generated
information. The experiment demonstrates how to apply the framework to design a collaborative system.

Our experiment will address the following research questions:
1. What is the optimal use of Al predictions in collaboration with human decision-makers?
2. Does fully revealing the Al prediction to human decision-makers maximize performance?

3. Which types of decisions should be automated?

LA literature in computer science considers whether or not to automate certain tasks to humans [Mozannar and Sontag,
2020, Raghu et al., 2019, Bansal et al., 2021] based on relative performance alone. Within economics, a recent set of papers
papers compare humans to Al or humans with AI to AI alone |Liu et al., 2019, Lai et al., 2021, Mullainathan and Obermeyer,
2019, Kleinberg et al., 2017, Agrawal et al., 2018], and the effect of biases in humans’ use of AI predictions on human-Al
collaboration [Agarwal et al., 2023]. However, there is little work on how AI predictions shape humans’ incentives to gather
their own information and the implication on human AI collaboration. An exception is Athey et al. [2020], which presents a
theoretical reason why Al assistance is not always optimal.



4. Do humans respond to confident Al predictions by reducing effort in gathering their own information?

If so, is it optimal to withhold information in AI predictions in order to incentivize effort?
5. Is the sufficient statistic approach valid, i.e. stable under alternative collaborative designs?

The experimental design requires the data collection to proceed in two phases. A first phase will be used
to estimate primitive objects that can be used to calculate the optimal design and predict the performance
of alternatives. The second phase will experimentally test a set of optimal and constrained designs, and
compare them with a benchmark. Further details of the experimental procedures are presented in section 3.

We study these questions in the context of fact-checking. Fact-checking provides an ideal setting to
investigate how to design human-AI collaboration. The veracity of information people consume online has
become increasingly important to policy-makers and researchers around the world [Lazer et al., 2018|. One
approach to limit the spread of false information online relies on fact-checkers. This approach is taken by
many large digital platforms including Facebook [Facebook]|. Recently, researchers across disciplines have
focused on improving the productivity of human fact-checking systems [Allen et al., 2021] and automating
parts of the process [Guo et al., 2022].

In addition to being an important setting for understanding how to design the optimal provision of Al
assistance to humans, fact-checking is also convenient for experimental purposes. Measuring performance
in fact-checking process is relatively simple, with a clearly defined binary state of the world of a statement
either being true or false. There are also established datasets and benchmarks containing both datasets of
true and false claims (e.g. Aly et al. [2021]) and manually curated ground-truth labels. In addition, recent
work has suggested crowd-workers can be effective fact-checkers [Allen et al., 2021]. Moreover, Al tools for

fact-checking can be readily developed.

2 Theoretical Framework

The experiment estimates the parameters needed to design an optimal policy that combines information
disclosure from an Al system to a human decision maker and automation of decisions by the Al system in
order to maximize the expected performance of the overall human-Al collaborative system. This section
describes the theoretical framework underlying this problem and the parameters to be estimated.

We study binary classification problems: there is a binary state of the world w € {0,1} (whether a given
statement is false or true) and a binary classification decision a € {0,1} (whether the statement is classified
as false or true). For each statement, the Al determines an assessment 6 € [0, 1] of the probability that w = 1.
The assessment is calibrated: Pr(w = 1]|0) = 6. Denote the population distribution of the AI assessment 0
by F. For each statement, the AI then either discloses a signal of its assessment to the human subject or
makes the classification on its own. We assume that the probability that a human subject makes the correct
classification when they learn that the mean Al assessment is x is well-defined, and we denote this probability
by V (x). For example, V (x) is well-defined if subjects are Bayesian and their own information about w
is conditionally independent of #. Let W () = max{V (x),1 — x, 2}, which is the maximum performance
attainable by an Al with assessment x by either disclosing this assessment to the subject (V (z)), classifying
the statement as false without human input (1 — ), or classifying the statement as true without human
input (z). It can be shown that the maximum expected performance attainable by any AI system in this

setting is

1
W* = max / W (x)dG (),
GeMPC(F) J,



where M PC (F) denotes the set of all distributions that are mean-preserving contractions of the distribution
of Al assessments F'. The optimal policy is then given by (i) coarsening the AI’s assessment so that the
distribution of coarsened assessments x is given by the solution G, (ii) disclosing the coarsened assessment
2 if V(x) > max {1l — z,z}, and (iii) classifying the statement as false (resp., true) without human input if
x <min{l -V (z),0.5} (resp., z > max{V (z),0.5}).

Similarly, the maximum expected performance attainable by information disclosure alone (when the Al

is not permitted to make the classification on its own) is

V*=  max /1 V (z)dH (z).
HeMPC(F) /g

The parameters of the framework are thus the distribution of calibrated Al assessments F' and the function
V (z) describing the performance of human participants as a function of the disclosed mean AT assessment
x. In our experiment, the distribution of assessments F' is given and known. The experiment thus estimates
the function V' (z). Given this function, we can calculate the optimal mixed disclosure/automation policy
G and the optimal disclosure-only policy H as described above. We can also compare the values of these
policies with that of the full disclosure policy, where the Al always discloses its assessment, which is given

by fol V (z) dF (x), and that of the no disclosure policy, where the Al reveals no information, which is given
1
by V ( I adF (m)).

3 Experimental Design

3.1 Sample of Claims

We use the set of claims collected and labeled in Aly et al. [2021] which we refer to as FEVEROUS. The
FEVEROUS data set contains approximately 80,000 claims that are labeled as either Supported (True),
Refuted (False), or Not Enough Information. The FEVEROUS claims are constructed by asking annotators
to generate claims from a snippet of highlighted Wikipedia text or tables.

FEVEROUS conducted extensive quality control to ensure the creation of high quality claims and labels.
We refer readers to Aly et al. [2021] for full details of this process. In addition to the quality control measures
taken in Aly et al. [2021] we remove claims that are not suitable for our study. Table 1 displays how many
claims are removed in each cleaning step. We first remove approximately 3% of claims with a ground truth
label of Not Enough Information. We then remove claims with any spelling or grammatical errors flagged
by either the rules-based LanguageTool API or GPT-40.2% Finally, we remove claims that we determine to
be poor quality, which primarily consists of claims where the ground truth can change over time, such as for

claims that reference an individual’s age.

3.2 Al Fact Checker

We use OpenAT’s GPT-40 as an automated fact-checker. Specifically, for each of the 41969 final claims used
in the analysis we query the OpenAIl API with the prompt “True or False: [claim|” and store the top 20

2We use the language tool python package (https://github.com/jxmorrisi2/language_tool_python) that is a wrapper
for the LanguageTool API (https://languagetool.org).

3For the GPT-40 grammar checking, we queried GPT-40 with the prompt “True or False. The following statement has no
grammatical or spelling errors: ” followed by each statement. We then discarded statements that GPT-40 assessed to be more
likely than not to contain a spelling or grammatical error.



Table 1: Claim-Cleaning Funnel

N Share

Total 78982 1.00
Filter Not Enough Info 76248 0.97
Filter Spelling / Grammar 42707 0.54
Filter Bad Facts 41969 0.53
Final 41969 0.53

most likely next tokens along with the probability distribution GPT-40 assess over these possible tokens.
We calculate a score a; for each claim 7 as follows

_ Zj p;1 [token; = true]
B Z_j p,1 [token; € {true, false}]

Q;

where token; is the canonical form (i.e. lower case) of the j* most likely next token and p; is the probability
GPT-40 assigns over the 5" token.

While GPT-4o0 gives us a set of scores a; for each claim, the model is not calibrated [Achiam et al., 2023].
Therefore, we calibrate the model to our data by binning the claims by a; into 200 bins and calculating the
share of claims that are true in each bin. This gives us a calibrated Al signal 6; for each claim i. Figure 1

summarizes the signals generated by the Al fact-checker.

3.3 Experiment Structure

This experiment will occur in two rounds. The first round estimates V' (x), the primitive that will be used
to calculate the optimal policies and to simulate the performance of alternative policies. The second round
tests the performance of participants under several disclosure and automation policies relative to the full
disclosure policy and their predicted performance. In each round, we will recruit participants from the
Prolific survey platform and ask them to assess the likelihood that each of a random subset of statements is
true. Participants will assess statements in different information environments further described below. In
each information environment participants may receive assistance from an AI fact-checker. In every round,
participants will first assess 5 practice cases under full information to familiarize themselves with the task

and interface. These cases will be discarded in all primary analyses.

3.3.1 First Round

We will estimate V () using data from 1500 participants that will each assess 30 statements under the full
disclosure policy where they observe the Al assessment 6 directly. This estimate will allow us to calculate
the optimal disclosure policy. Power calculations based on pilot data suggest that the maximum standard

error for V (#) is at most two percentage points for 6 discretized into twenty-one equally spaced bins.

3.3.2 Second Round

In the second round, we will ask 2000 participants to assess claims under varying information environments.

This design will include both a within and across comparison. This will allow us to take advantage of the
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Figure 1: Summary of Al Predictions

(a) Calibration Function

e
oo
L

o
[o)}
1

=]
~
1

S
[\S)
L

0.0

0.0

1.0 7

0.8

0.6

0.4 1

0.2

0.0

0.2 0.4 0.6 0.8 1.0
Raw Score

(b) Empirical CDF of Al Signals

0.0

0.2 04 0.6 0.8 1.0
Calibrated Prediction



within comparisons to control for heterogeneity in participant skill while preserving the ability to do pure
across participant comparisons. Specifically, each participant will assess 10 claims in each of the following

information environments
1. No disclosure: participants observe only the prior mean E |w]
2. Full disclosure: participants observe the Al assessment 6

3. Automation + no disclosure: cases where the Al performance exceeds the human performance are au-

tomated and humans observe only the share of cases that are true among those that are not automated.

4. Optimal automation and disclosure: participants observe the signal from the optimal policy G described

in Section 2.

The order of the treatments will be randomly drawn for each participant. If the optimal disclosure policy
without automation looks sufficiently different from the full disclosure policy (i.e. H from Section 2) we
may also include this policy in round 2, and may omit one of the policies listed above. We will amend
this pre-analysis plan describing the policies we test in the second round in greater detail once the optimal
policies are calculated. Our power calculations suggest that this sample size will be powered at 80% to detect

a difference between policies of 1.4 percentage points with a p-value of 5%.

3.4 Variables

For every case we will collect the the participant’s assessment s € [0, 1] of the probability a claim is true,
whether they click a link to google the subject of the claim, a self-reported measure of whether they used
any external sources, and the time taken on the claim (winsorized at the 5th and 95th percentiles). We set
the participant’s classification of the case to be true if they report s > 0.5, i.e. a =1{s > 0.5}. Our primary
outcomes will be an indicator for whether the participant correctly classified the statement as true or false,
and the deviation of a participant’s assessment of the likelihood a statement is true from the ground truth.

Figure 2 contains a screenshot of the interface used to collect the primary outcome s.

4 Empirical Strategy

4.1 Round 1

We will estimate V () using non-parametric regression of accuracy on 6, where accuracy is measured both
in terms of the share of statements correctly classified (1{a = w}) and the deviation of the participant’s
assessment from the ground truth (|s —w|). These estimates will then be used to calculate the optimal
disclosure and automation policies described in Section 2.

The shape of the function V' (#) has important implications for the optimal policy. In particular, if V' (9)
is convex it is always optimal to fully disclose # on cases that are not being automated. Therefore, we will
test whether or not V' () is convex.

We will also report non-parametric estimates of effort as a function of the Al signal 6. That is, we will
non-parametrically estimate E [y|f] where y is an indicator of whether the participant used external sources,
an indicator of whether the participant clicked the link to google the statement’s subject, and the time the

participant took to make their assessment.



Figure 2: Screenshot of Experimental Interface

Statement 1/35

Emanuel King (born August 15, 1963 in Leroy, Alabama) did not play in the National Football League.
Al assessment: Likelihood statement is true is6% ¢ @

Link to google search for "Emanuel King":
Google Search

Your assessment:

This study is conducted by researchers at MIT. For help please contact fact-checking@mit.edu

Accessibility



4.2 Round 2

In the second round we will estimate the treatment effect of the various disclosure policies on the accuracy

of participant’s assessments by estimating regressions of the form

Yij = Bo + Z 1{policy (i,j) = k] Br + €ij

ke Policies

where y;; is the outcome for statement ¢ and participant j, 3y is a constant that represents average perfor-
mance in the full disclosure policy, Policies represents the set of policies tested (excluding the full disclosure
policy), policy (i,j) € Policies indicates the policy under which participant j assessed statement 4, Sj rep-
resents the average treatment effect of policy k relative to full disclosure, and €;; is an error term. We will
test whether each gy differ from 0 in addition to testing whether the ;. are statistically distinguishable from
one another. All statistical inference will be clustered at the participant and statement level.

The primary outcomes for this analysis will be measures of accuracy including both an indicator of
whether the participant correctly classified a statement y;; = 1{a;; = w;} and the deviation of the partic-
ipant’s continuous assessment from the ground truth y;; = |s;; —w;|. Secondary outcomes will again be
measures of participant effort including an indicator of whether the participant used external sources, an
indicator of whether the participant clicked the link to google the statement’s subject, and the time the
participant took to make their assessment.

In addition, we will test the stability of V () by comparing the performance of the policies in round
2 to the predicted performance under the assumption that V () is stable. We will test both the average
performance across policies and the function V (6) itself on the support of G. For example given the optimal

policy G obtained from the first round, we will test if

1
E [y;j|policy (i, §) = optimal] = / Ws (z) dGq (z)
0

where the left hand is the average performance of participants in the optimal policy condition and W5 (+) is
an estimate of W (+) in the full disclosure condition in the second round. We will also test the null hypothesis

that predicted performance equals actual performance at each point in the support of the optimal policy:
E [yij|policy (i, j) = optimal, §; = x] = W (z) Ya € Support (Gy) .

We will run analogous tests for the other policies tested.

4.3 Additional Secondary Analyses
4.3.1 Simulating the Performance of Alternative Disclosure Policies

Given the estimate of V' (z) from the first round we can simulate the performance of many alternative policies.
For example, we will simulate the performance of a policy that discloses at most three Al signals to assess

how close the performance of a rule-of-thumb High/Medium/Low policy is to that of the optimal policy.

4.3.2 Estimating the Cost of Human Effort Response

A benefit of collecting continuous assessments is that we can disentangle the relative costs of human shirking

and incorrect belief updating. In particular, we can estimate a Bayesian benchmark that optimally combines



the assessments of humans in the no disclosure condition with the AI signal. This benchmark holds efforts
fixed because the AI signal is not disclosed. Then, we calculate the cost of the human effort responses
to Al assistance under correct belief updating by comparing this benchmark to a Bayesian with an effort
response. To construct this alternative, we will estimate the optimal combination between our participants’
reported assessments in the full disclosure condition with the AI signal. Finally, we can compare these two
benchmarks to the assessments made by participants in the full disclosure condition to evaluate the cost of

incorrect belief updating.

4.3.3 Estimating the Value of AI Improvement

We will also simulate the performance of different policies under alternative AI’s. Specifically, we will study
how the optimal policies change if we use the distribution of calibrated Al signals generated from less capable
AT fact-checkers.
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