
Power Analysis for Narrative WTP (BDM)

3-Signal Bundle, Technology 0.45/0.15/0.40

Design Summary

We study a 2×2 between-subjects design (Framing × Signal Technology).In this power analysis,
we posit that only the Narrative × Nondiagnostic (Treatment from now on) condition increases
mean WTP; the other three treatment conditions have no effect on WTP (i.e., their mean equals
control).

We compare Baseline vs. Treatment on the willingness to pay (WTP, in points) for a
bundle of three signals, elicited via a BDM mechanism. Ex-ante signal probabilities are the
same across conditions and they are common knowledge.

Setup, Assumptions and Theoretical Treatment Difference

Setup

• Signal technology. For each bundle, we draw three signals s ∈ {pos, neg, nd} indepen-
dently conditional on the true state. Per draw, the probabilities are (0.45, 0.15, 0.40).
Here, pos denotes a signal aligned with the true state, neg a signal that contradicts it,
and nd a nondiagnostic (or missing) signal.

• Scoring rule: Quadratic scoring rule (Brier).

Assumptions

• Beliefs: Let θ be the true state of the world. Prior p = Pr(θ = 1) = 0.5; Bayes rule to
compute the EVSI1.

• Baseline (C No Info, C Yes Info, N No Info): Subjects value the bundle by the
theoretichal EVSI under 0.45/0.15/0.40:

WTPcontrol = 8.916 points.

Treatment Difference

• Treatment (narrative-boosted nondiagnostic). We model the narrative as making
nondiagnostic signals partially informative in perception. Operationally, we halve the
nondiagnostic probability and redistribute the freed mass to pos and neg in the same 3:1
ratio as their baseline shares, giving (pos, neg, nd) = (0.60, 0.20, 0.20). Signals remain
conditionally independent (given the state) with three draws per bundle. This leads to:

WTPtreat = 11.069 points.

1Expected Value of Sample Information, more details in Appendix A.
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Hence the theoretical treatment difference between these technology is:

∆ ≡ WTPtreat −WTPcontrol = 11.069− 8.916 = 2.152 points,

corresponding to an effect size of approximately

d =
∆

σ
=

2.152

5
≈ 0.43,

which can be interpreted as a moderate effect according to conventional benchmarks.

Power Calculations

We test the difference in mean WTP between treatment and baseline using a two-sample t-test
with equal variances (σ = 5), two-sided, at α = 0.05 with target power 1− β = 0.80.

We compare mean WTP between treatment and baseline at the participant level (one ob-
servation per participant, defined as the average WTP over 15 rounds), treating participants
as independent. For power calculations, we account for within-participant correlation across
rounds via the design effect

DE = 1 + (m− 1)ρ,

with m = 15 and ρ ∈ {0.3, 0.4, 0.5}, which maps per-round variability into the variance of the
participant-level mean used in the test.

The unit of analysis is the participant-level mean WTP (averaged across the 15 rounds).
Power calculations assume independent observations across participants and common SD σ = 5
per arm (conservative). As a robustness check, we will run 1000 simulations using a panel
regression with the expected effect size and the planned number of observations per treatment.

For equal variances σ2 and equal group sizes, the per-cell sample size for a one-shot design
is

ncell =
2 (z1−α/2 + z1−β)

2 σ2

∆2
≈ 15.68σ2

∆2
,

since z1−α/2 ≈ 1.96 and z1−β ≈ 0.84 so (1.96 + 0.84)2 ≈ 7.84 and 2× 7.84 ≈ 15.68.

A. One-Shot Design (one elicitation per person)

Per-round SD σ Per-cell n Total N (4 cells)

5 85 340

B. Fifteen Rounds per Person (pay all 15 rounds)

When each subject providesm = 15 paid WTPs, observations within subject are autocorrelated.
Using the usual design effect

DE = 1 + (m− 1)ρ = 1 + 14 ρ,

the effective number of independent observations per subject is m/DE. A conservative adjust-
ment divides the one-shot requirement by m/DE to obtain subjects per cell.
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Results for σ = 5.

ICC ρ Per-cell n (subjects) Total N (4 cells)

0.3 30 120
0.4 38 152
0.5 46 184

Planned sample size. Using the conservative assumption ρ = 0.5, we target 46 participants
per cell, for 4× 46 = 184 participants in total.

Simulations

To validate the analytical power calculations, we conducted Monte Carlo simulations replicating
the experimental design (four treatment arms, 15 rounds per subject, and intra-subject corre-
lation ρ = 0.50). In each of 1,000 replications, we generated subject-level random intercepts,
applied the theoretical treatment shifts, and estimated the interaction effect using OLS with
standard errors clustered at the participant level. The proportion of significant replications
at α = 0.05 yields an empirical power of 0.84, confirming that the analytical approximation
provides a reliable prediction of the true design sensitivity.

Appendix

A EVSI (andWTP) for a 3-Signal Bundle under Quadratic/BSR

Setup. Let the state be θ ∈ {0, 1} with prior p = Pr(θ = 1). A purchased bundle delivers
n = 3 conditionally independent signals. Under the quadratic (Brier) scoring rule, truthful
reporting equals the posterior p3 after the bundle. For a risk–neutral agent, willingness to pay
equals EVSI:

WTP3(p) = EVSI3(p) = 100
[
E(p23)− p2

]
= 100V ar(p3).

State-symmetric signal technology and diagnosticity. Conditional on θ = 1, a single
draw yields

(pos, neg, nd) = (α, β, 1− α− β), 0 < β < α < 1.

Under θ = 0 the informative probabilities swap: (pos, neg) = (β, α). Let I ≡ α+ β denote the
informative share and define the diagnosticity (likelihood-ratio) parameter

λ ≡ α

β
> 1.

Distribution of evidence. Let K ∼ Binom(3, I) be the number of informative draws in the
bundle, and define D = #pos−#neg ∈ {−k,−k + 2, . . . , k} given K = k. By symmetry,

Pr(D = d | K = k) =

(
k

k+d
2

)
2−k, d ≡ k (mod 2).

Posterior update. Each pos contributes a Bayes factor λ and each neg contributes λ−1, so
the net Bayes factor is λD. Hence, for prior p,

pk,d(p) =
p λd

1− p+ p λd
.
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EVSI in closed form. Let p3 = pK,D(p). Then

EVSI3(p; I, λ) = 100

[
3∑

k=0

(
3

k

)
Ik(1− I)3−k

k∑
d=−k, step 2

(
k

k+d
2

)
2−k

(
pk,d(p)

)2 − p2

]
.

Explanation. The outer sum averages over the possible numbers of informative signals K = k in
the three-signal bundle (with K ∼ Binom(3, I)); the inner sum averages, given k, over the net
balance D = d of positive vs. negative signals. For each case (k, d) we compute the posterior
pk,d(p) and its quadratic score (pk,d(p))

2, subtract the baseline score p2 (no information), and
finally multiply by 100 to express the EVSI in points.

B “Narrative-boosted nondiagnostic” transformation

Goal. We model the narrative as making a fraction of nondiagnostic draws behave as perceived
informative draws, while preserving the per-draw diagnosticity (likelihood ratio) λ = α/β.

Baseline. Let (α, β, 1 − α − β) be the (perceived) probabilities of (pos,neg,nd), with infor-
mative share I ≡ α+ β and λ ≡ α/β > 1.

Transformation. Choose ϕ ∈ [0, 1], the fraction of nondiagnostic mass (1− I) that becomes
informative. The transformed informative share is

I ′ = I + ϕ(1− I), and hence nd′ = 1− I ′ = (1− I)(1− ϕ).

To keep λ unchanged, split the added informative mass proportionally to α and β:

α′ = α+ ϕ(1− I)
α

I
=

λ

1 + λ
I ′, β′ = β + ϕ(1− I)

β

I
=

1

1 + λ
I ′.

Example (halving nondiagnostic). If the baseline is (α, β, nd) = (0.45, 0.15, 0.40) (I =
0.60, λ = 3) and we “halve” nondiagnostic, then ϕ = 0.5:

I ′ = 0.60 + 0.5× 0.40 = 0.80, (α′, β′, nd′) =
(
0.60, 0.20, 0.20

)
.
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