

First regression

To provide a first evidence for possible treatment differences, we will run the following regression for each round separately:

$$|P_i - P_i^{Bayes}| = N_i + \varepsilon_i$$

where P_i and P_i^{Bayes} are the subject's stated and computed bayesian beliefs respectively. N_i is a dummy equal to one if the subject is assigned to the Narrative treatment.

Regression to test Bayesian behaviour

Following [Charness and Dave \(2017\)](#) and [Kieren and Weber \(2025\)](#).

Say culprits are either Marco (M state) or Andrea (A state).

Consider the i_{th} person reporting the probability of the M state at each point in a sequence of 10 rounds. If she believes that both states are initially equally likely ex ante should report a 0.5 probability for the M state as an initial prior. Further, a Bayesian would calculate the probability of the M state after round t as (assuming she disregards non-informative signals)

$$P_t^{Bayes} = P(M | z_t)^{Bayes} = \frac{\theta^{z_t}}{\theta^{z_t} + (1 - \gamma - \theta)^{z_t}}, \quad z_t = m_t - a_t$$

where $m_t(a_t)$ denotes the number of infos towards Marco (Andrea) that have been drawn as of round t , the proportion of Marco's infos in the M state is $\theta = 0.45$, and the proportion of non-informative signals is $\gamma = 0.25$. Note that a Bayesian is indifferent regarding the order of the draws, since only the difference (z_t) is relevant. Thus, the natural log of the odds ratio for a Bayesian is given by

$$\pi_t = \ln \left(\frac{P(M | z_t)^{Bayes}}{P(A | z_t)^{Bayes}} \right) = \ln \left(\frac{\theta}{1 - \gamma - \theta} \right) \times z_t = 0.4055 \times z_t \stackrel{<}{>} 0,$$

and it is linear in info received; that is, the Bayesian log-odds ratio is updated by $\pm 0.4055 \times z_t$ after each new draw.

We next note that first-differencing both sides of equation yields:

$$\Delta \pi_t = \pi_t - \pi_{t-1} = \ln \left(\frac{\theta}{1 - \gamma - \theta} \right) \times \Delta z_t = 0.4055 \times \Delta z_t,$$

where $\Delta \pi_t \in \{-0.4055, 0, 0.4055\}$ and $\Delta z_t \in \{-1, 0, 1\}$. In contrast to [Charness and Dave \(2017\)](#) and as in [Kieren and Weber \(2025\)](#) we have 0 as a possible value as we have the uninformative signals.

Finally, to isolate a 'confirming' information condition, we construct the following dummy variables:

$$C_t^M = \begin{cases} 1 & \text{if } \pi_{t-1} > 0 \text{ and } s_t = m \\ 0 & \text{otherwise} \end{cases}$$

$$C_t^A = \begin{cases} 1 & \text{if } \pi_{t-1} < 0 \text{ and } s_t = a \\ 0 & \text{otherwise} \end{cases}$$

where s_t is the info drawn in the current round. These variables measure whether a Bayesian receiver would view a received signal as confirming a belief. For example, if a Bayesian believed that the M state of the world was more likely to be in play (i.e., $\pi_{t-1} > 0$) for a given draw t and she receives a Marco signal ($s_t = m$), then we say the belief of a M state of the world is confirmed ($C_t^M = 1$). The same holds if that Bayesian believed that the A state of the world was more likely to be in play ($\pi_{t-1} < 0$) and she received an Andrea signal ($s_t = a$), in which case we would have that $C_t^A = 1$.

Moreover, we should take into account cases where null information is drawn. Let

$$C_t^{n+} = \begin{cases} 1 & \text{if } \pi_{t-1} > 0 \text{ and } s_t = n \\ 0 & \text{otherwise} \end{cases}$$

$$C_t^{n-} = \begin{cases} 1 & \text{if } \pi_{t-1} < 0 \text{ and } s_t = n \\ 0 & \text{otherwise} \end{cases}$$

be dummy variables that measure whether a Bayesian would view a null signal as confirming a belief.

Given the change in log-odds ($\Delta\pi_t$), and the dummies above, consider the following regression for a Bayesian:

$$\pi_t = \rho\pi_{t-1} + \beta\Delta z_t + \delta_1 C_t^M + \delta_2 C_t^A + \delta_3 C_t^{n+} + \delta_4 C_t^{n-} + \varepsilon_t$$

because a Bayesian would not be subject to either the conservatism/overreaction heuristic nor would she place any additional weight on confirming or uninformative signals, it must be the case that the coefficients satisfy

$$\rho = 1, \quad \beta = \ln\left(\frac{\theta}{1 - \lambda - \theta}\right), \quad \delta_i = 0, \quad i = 1, 2, 3, 4$$

Actual Estimation

If you want to estimate this for a subject that is not Bayesian, within a round, the natural logarithm of an individual subject's odds ratio (the analog of π_t), based on her stated probability at each round t , that is $P_{it} = P_{it}(\text{M} \mid z_t)$, is:

$$\lambda_{it} = \ln(\Lambda_{it}) = \ln\left(\frac{P_{it}(\text{M} \mid z_t)}{1 - P_{it}(\text{M} \mid z_t)}\right) \quad (1)$$

and may differ from π_t . Moreover, you need to either truncate data to lie in the [0.01, 0.99] interval, or hardcode beliefs equal to 0 or 1 to 0.01 and 0.99 respectively, so that λ_{it} is always defined.

As before, construct the dummy variables

$$C_{it}^M = \begin{cases} 1 & \text{if } \lambda_{it-1} > 0 \text{ and } s_t = m \\ 0 & \text{otherwise} \end{cases}$$

$$C_{it}^A = \begin{cases} 1 & \text{if } \lambda_{it-1} < 0 \text{ and } s_t = a \\ 0 & \text{otherwise} \end{cases}$$

$$C_{it}^{n+} = \begin{cases} 1 & \text{if } \lambda_{it-1} > 0 \text{ and } s_t = n \\ 0 & \text{otherwise} \end{cases}$$

$$C_{it}^{n-} = \begin{cases} 1 & \text{if } \lambda_{it-1} < 0 \text{ and } s_t = n \\ 0 & \text{otherwise} \end{cases}$$

Clearly if people deviate from Bayesian behavior due to conservatism (over-reaction), one would expect to see log-odds for people that are consistently smaller (larger) than $\pm 0.4055 \times z_t$. If people do weight evidence that confirms a previously held belief, or weight null information, then it would be the case that the dummies would predict log-odds; thus the regression for a subject, analogous to the one for a Bayesian, would be:

$$\lambda_{it} = \rho \lambda_{it-1} + \beta \Delta z_t + \delta_1 C_{it}^M + \delta_2 C_{it}^A + \delta_3 C_{it}^{n+} + \delta_4 C_{it}^{n-} + \varepsilon_{it}$$

clustering errors at the subject level, with a test of Bayesian behavior being that the estimate for ρ equals 1, the estimate for β equals $\ln\left(\frac{\theta}{1-\gamma-\theta}\right)$, and that the coefficients on the dummies C_{it}^M , C_{it}^A , C_{it}^{n+} and C_{it}^{n-} , namely, δ_i , $i = 1, 2, 3, 4$ be zero since a Bayesian would not care whether a particular signal (draw) confirmed a belief or is non-informative. Conservatism would manifest with an estimate of β less than $\ln\left(\frac{\theta}{1-\gamma-\theta}\right)$ whereas use of the over-reaction heuristic would imply an estimate of β greater than $\ln\left(\frac{\theta}{1-\gamma-\theta}\right)$. If people are affected by confirmation bias in that they place extra weight on a signal that confirms beliefs, then it would be the case that the estimates of δ_i , $i = 1, 2$ would be non-zero. If people use the uninformative signal to confirm their beliefs, then the estimates of δ_i , $i = 3, 4$ would be non-zero as well. In summary, a test of Bayesian behavior would be:

$$H_0 : \hat{\rho} = 1 \quad \text{and} \quad \hat{\beta} = 0.4055 \quad \text{and} \quad \hat{\delta}_i = 0, \quad i = 1, 2, 3, 4.$$

We will do this test for both treatments separately.

References

Charness, G., & Dave, C. (2017). Confirmation bias with motivated beliefs. *Games and Economic Behavior*, 104, 1-23. Retrieved from <https://www.sciencedirect.com/science/article/pii/S0899825617300416> doi: <https://doi.org/10.1016/j.geb.2017.02.015>

Kieren, P., & Weber, M. (2025). Expectation formation under uninformative signals. *Management Science*, 0(0), null. Retrieved from <https://doi.org/10.1287/mnsc.2023.03367> doi: 10.1287/mnsc.2023.03367