First regression
To provide a first evidence for possible treatment differences, we will run the following
regression for each round separately:

|Pz _PiBay63| _ Nz+57,

where P, and PP** are the subject’s stated and computed bayesian beliefs respectively.
N; is a dummy equal to one if the subject is assigned to the Narrative treatment.

Regression to test Bayesian behaviour
Following Charness and Dave (2017) and Kieren and Weber (2025).
Say culprits are either Marco (M state) or Andrea (A state).

Consider the 7;, person reporting the probability of the M state at each point in a sequence
of 10 rounds. If she believes that both states are initially equally likely ex ante should report
a 0.5 probability for the M state as an initial prior. Further, a Bayesian would calculate
the probability of the M state after round t as (assuming she disregards non-informative
signals)
PBayes P(M ‘ )Bayes o
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where my(a;) denotes the number of infos towards Marco (Andrea) that have been drawn
as of round ¢, the proportion of Marco’s infos in the M state is § = 0.45, and the proportion
of non-informative signals is v = 0.25. Note that a Bayesian is indifferent regarding the
order of the draws, since only the difference (z;) is relevant. Thus, the natural log of the
odds ratio for a Bayesian is given by

B P(M | z;)Baves 0 B <
Ty = In <W =In 1_7—_9 X 2y = 0.4055 x Zt ; O,

and it is linear in info received; that is, the Bayesian log-odds ratio is updated by
+0.4055 x z; after each new draw.
We next note that first-differencing both sides of equation yields:

Amy=m —m_1 = In ( ) X Az = 0.4055 x Az,

1—v—-10
where Am, € {—0.4055,0,0.4055} and Az, € {—1,0,1}. In contrast to Charness and Dave
(2017) and as in Kieren and Weber (2025) we have 0 as a possible value as we have the
uninformative signals.

Finally, to isolate a ‘confirming’ information condition, we construct the following dummy
variables:

oM =

1 ifm_q>0and s; =m
0 otherwise



P10 otherwise

A {1 ifm_1 <0and s; =a

where s; is the info drawn in the current round. These variables measure whether a
Bayesian receiver would view a received signal as confirming a belief. For example, if
a Bayesian believed that the M state of the world was more likely to be in play (i.e.,
m—1 > 0) for a given draw ¢ and she receives a Marco signal (s, = m), then we say the
belief of a M state of the world is confirmed (CM = 1). The same holds if that Bayesian
believed that the A state of the world was more likely to be in play (m—1 < 0) and she
received an Andrea signal (s; = a), in which case we would have that C* = 1.

Moreover, we should take into account cases where null information is drawn. Let

CZL+:{1 if 1 >0and s, =n

0 otherwise

on _ 1 fm_1<0and s, =n
" )10 otherwise

be dummy variables that measure whether a Bayesian would view a null signal as confirm-
ing a belief.

Given the change in log-odds (Am;), and the dummies above, consider the following
regression for a Bayesian:

T = pmi_1 + BAz + 5,O0M + 5,08 4 63C7 + 6,07 + &

because a Bayesian would not be subject to either the conservatism/overreaction heuristic
nor would she place any additional weight on confirming or uninformative signals, it must
be the case that the coefficients satisfy

0 .
p—]_, B—ln(m>, 51—0, Z—172,3,4

Actual Estimation

If you want to estimate this for a subject that is not Bayesian, within a round, the natural
logarithm of an individual subject’s odds ratio (the analog of m;), based on her stated
probability at each round ¢, that is Py = Py(M | z;), is:

Plt(M | Zt) ) (1>
1 — Pzt(M | Zt)
and may differ from m;. Moreover, you need to either truncate data to lie in the [0.01,
0.99] interval, or hardcode beliefs equal to 0 or 1 to 0.01 and 0.99 respectively, so that \;
is always defined.

>\it = ln(Alt) =1In (



As before, construct the dummy variables

oM _ 1 if Ny >0and s, =m
i 0 otherwise

1 if Ay_1<0and s, =a
C’{?:{ t t

0 otherwise

1 ifN\y_1>0and s, =n
0 otherwise

on- _ 1 if A1 <0and s, =n
i 0 otherwise

Clearly if people deviate from Bayesian behavior due to conservatism (over-reaction),
one would expect to see log-odds for people that are consistently smaller (larger) than
+0.4055 x z;. If people do weight evidence that confirms a previously held belief, or weight
null information, then it would be the case that the dummies would predict log-odds; thus
the regression for a subject, analogous to the one for a Bayesian, would be:

Nit = phi—1 + BAz + 6,CY + 6,C4 4 65C7F + 6,077 + &4
clustering errors at the subject level, with a test of Bayesian behavior being that the
estimate for p equals 1, the estimate for 5 equals In (1_#;_9), and that the coefficients on
the dummies C¥, C4, Ct and Cj;~, namely, &;, i = 1,2, 3,4 be zero since a Bayesian
would not care whether a particular signal (draw) confirmed a belief or is non-informative.

Conservatism would manifest with an estimate of 3 less than In (Jﬁ) whereas use of

the over-reaction heuristic would imply an estimate of 3 greater than In k:ﬁ). If people
are affected by confirmation bias in that they place extra weight on a signal that confirms
beliefs, then it would be the case that the estimates of ¢;, ¢ = 1,2 would be non-zero.
If people use the uninformative signal to confirm they beliefs, then the estimates of ¢;,
1 = 3,4 would be non-zero as well. In summary, a test of Bayesian behavior would be:

Hy:p=1 and B=04055 and 4, =0, i=1,2,3,4.
We will do this test for both treatments separately.
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