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1 General Information

1. Trial Title: Payoff variance in preference elicitation with the BDM mechanism

2. Location: United States of America

3. Primary Investigator: Dr. Marco Palma

4. Other Primary Investigators: Dr. Andreas Drichoutis & Benjamin Horlick

5. Keyword(s): Behavior

6. Additional Keyword(s): Underbidding, Overbidding, Game form recognition, Misbidding, BDM mech-
anism, induced value

7. JEL Code(s): D81, C90

8. Abstract: Under expected utility theory, the range of the bid distribution in the Becker-DeGroot-
Marschak (BDM) mechanism should not influence bidding behavior. However, there is overwhelming
empirical evidence showing it does. We examine the relationship between the upper bound of the
range for the randomly drawn price in the BDM mechanism and the variance of the payoff. Treating
payoff variance as a measure of risk, we develop a framework that causally explains empirical un-
der/overbidding behavior shifts due to changes in the support set distribution. We then present results
from an experiment eliciting willingness-to-accept after endowing subjects with an induced value card
worth a fixed amount and varying the random offer support set’s upper bound. We analyze within-
subject effects among three BDM rounds and explore heterogeneous responses due to varying risk
preferences that we hypothesize will result in aggregate under/overbidding or more symmetrical bids
around the induced value.

2 Dates

1. Trial Start Date: December 1, 2025

2. Intervention Start Date: December 1, 2025

3. Intervention End Date: December 5, 2025

4. Trial End Date: December 5, 2025

3 Sponsors & Partners
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4 Experimental Details

1. Intervention (Public): We implement the BDM mechanism in three repeated rounds to elicit
willingness-to-accept for an induced value item. The value of the item is held constant at $3. The
distribution of possible offers ranges from $0 to an upper bound that is exogenously changed each round
to $4, $6, and $12 in random order. Shifting the upper bound changes the variance of the payoff, and
we hypothesize it impacts subject behavior to explain overbidding (in $12), underbidding (in $4) and
more symmetrical bidding (in $6) around the induced value.

2. Intervention (Hidden): N/A

3. Primary Outcome (End Point): Individual willingness-to-accept values in each treatment

4. Primary Outcomes (Explanation): We use the elicited values to test whether moving the upper bound
of the support set results in changes to the distribution of WTA values. Please see the Analysis Plan
in Section 6 for more details.

5. Secondary Outcomes (End Points):

(a) Individual risk preference measures elicited via the Bomb Risk Elicitation Task (BRET) from
Crosetto and Filippin (2013).

(b) Individual risk preference measures elicited via self-evaluation.

6. Secondary Outcomes (Explanation): We utilize the secondary outcomes to conduct robustness checks
of the primary hypothesis and explore heterogeneous effects by risk preferences. Please see the Analysis
Plan in Section 6.

7. Experimental Design (Public): Our experiment is divided in two parts. In the first part, subjects are
asked to submit offers to sell a card worth $3 to the experimenter. We vary on a within-subjects basis
the upper bound of the support set at $4, $6, and $12 in three repeated rounds in random order with
the lower bound remaining at $0. At the end of the experiment, one of the three rounds is selected
for realization. Following the BDM mechanism task, we ask respondents about their strategy selection
process and give them the opportunity to explain a rationale in an open response format.

The second part of the experiment elicits subjects’ risk preferences. We implement the static version
of the BRET (Crosetto and Filippin, 2013). Subjects complete the task once with no practice rounds.
The task presents participants with 100 boxes arranged in a 10x10 grid. One randomly selected box
holds a bomb while the other 99 contain a reward of $0.10. Each subject then chooses how many
boxes to collect. If the bomb is among the selected quantity of boxes, the participant receives no
additional earnings from the task; otherwise, we add the amount of money inside the collected boxes
to the subject’s total payoff.

As a secondary measure of risk preferences, we also employ the self-reported risk question from the
German Socio-Economic Panel survey (Dohmen et al., 2011).

8. Experimental Design (Hidden): N/A

9. Randomization Method: Computer; all randomizations are performed within Qualtrics.

10. Randomization Unit: Treatment order is randomized at the individual level.

11. Was the treatment clustered? No.

12. Sample Size

(a) Planned Number of Clusters: 300 individuals

(b) Planned Number of Observations: 900 observations (300 individuals and 3 rounds)

(c) Sample size (or number of clusters) by treatment arms: N/A
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(d) Power calculation: We utilize the data from similarly parameterized treatments in Drichoutis
et al. (2025) to estimate the inputs to our power calculations. With an induced value of $3.00, the
average offer shifted from $2.701 with a support set upper bound of $4.00 to $3.158 with a support
set upper bound of $6.00. Each subject participated in both treatments. The pooled standard
deviation of the two offer distributions was 0.895. In our power analysis presented below, we
conservatively assume a between-treatment correlation of 0.3, compared to the actual observed
correlation of 0.501. The effect size, dz, found by Drichoutis et al. (2025) is then 0.429, given by
the formula:

dz =
µ1 − µ2

σdiff
(1)

where µ1 and µ2 represent the mean offer value by treatment, and σdiff is the correlation-adjusted
pooled standard deviation:

σdiff =
√
σ2
1 + σ2

2 − 2rσ1σ2 (2)

where σ1 and σ2 are the standard deviations by treatment and r is the coefficient of correlation
(Cohen, 2013; Lakens, 2013).

We employ the asymptotic relative efficiency (ARE) method in our power calculation which esti-
mates the sample size required under a parametric t-test at a given power level and converts the
result to the sample size required by the nonparametric Wilcoxon signed-rank test that we use to
test our primary hypothesis (Faul et al., 2009).

From Rosner et al. (2006), Cohen (2013), and Lakens (2013), the estimated sample size n to achieve
the maximum significance level (probability of Type I error) under the Holm-Bonferroni step-down
procedure with three joint hypotheses of α = 0.05

3 ≈ 0.0167 and a power level (probability of Type
II error) of β = 0.80 under a one-sided t-test is given by:

n =
(z1−α + z1−β)

2

d2z
(3)

where z1−α and z1−β take the values of 2.13 and 0.84, respectively (Holm, 1979). The sample size
required under a t-test is then 51. The ARE of the Wilcoxon test is 3

π ≈ 0.955, implying a sample
size of 53 (Faul et al., 2009). Figure 1 presents the sensitivity of the sample size calculation
to the assumed between-treatment correlation. Utilizing the actual observed correlation value
of 0.509 yields a sample size of 39. In order to ensure our tests analyzing the subpopulation
of risk-tolerant subjects are adequately powered, we reviewed three BRET studies reporting the
proportions of risk-averse, risk-tolerant, and risk-neutral responses and found that, on average,
24.3% of participants exhibited risk-tolerant behavior (Crosetto and Filippin, 2013; Gioia, 2017;
Soetevent and Romensen, 2017). Our analysis, therefore, indicates a total sample size of 218
individuals provides adequate power to test our secondary hypotheses regarding heterogeneity by
risk preferences. To account for attrition and unusable responses, we plan to target 300 total
respondents which would yield approximately 199 risk-averse subjects, 73 risk-tolerant subjects,
and 29 risk-neutral subjects. In the event that our initial sample does not reach the required
threshold of 53 risk-tolerant subjects, we intend to extend our data collection to additional subjects
until the quota is met.

References for Experimental Details

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.
Crosetto, P., & Filippin, A. (2013). The ‘bomb’ risk elicitation task. Journal of Risk and Uncertainty, 47 (1).
Dohmen, T., Falk, A., Huffman, D., Sunde, U., Schupp, J., & Wagner, G. G. (2011). Individual risk atti-

tudes: Measurement, determinants, and behavioral consequences. Journal of the European Economic
Association, 9 (3).
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Figure 1: Since a higher correlation reduces σdiff , our assumption of r = 0.3 means our sample size estimate
is conservative.

Drichoutis, A. C., Palma, M. A., & Feldman, P. (2025). Incentives and payment mechanisms in preference
elicitation [unpublished].

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using g* power 3.1:
Tests for correlation and regression analyses. Behavior research methods, 41 (4), 1149–1160.
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6 Analysis Plan

6.1 Theoretical Considerations

The BDM mechanism is one of the most widely used methods in experimental economics to elicit willingness
to pay (WTP) or willingness to accept (WTA) for goods and services (Becker et al., 1964). Under the
standard expected utility framework, changes in the upper bound of the support set should not impact
a subject’s WTA (or WTP) for a fixed induced value (IV). In the BDM mechanism, submitting an offer
equal to the IV, i.e., providing a truthful response, is a weakly dominant strategy and always maximizes the
expected payoff. In practice, however, systematic deviations from truth-telling are well documented (Bohm
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Figure 2: Expected value and variance plots across all offer values for each of the three treatments

et al., 1997; Irwin et al., 1998; Noussair et al., 2004; Banerji and Gupta, 2014; Cason and Plott, 2014; Flynn
et al., 2016; Mamadehussene and Sguera, 2023; Drichoutis et al., 2025). We propose that the selection of
the support set range influences subjects’ under/overbidding behavior through determining the curvature of
the variance function which establishes the risk/reward profile of a given bid.

We derive the payoff variance for the IV WTA setting of the BDM mechanism, akin to the Cason and
Plott (2014) experimental setup, and show that its behavior depends on the specific values chosen for the
range of the support set for the randomly generated market offer. Intuitively, the payoff as a function of an
offer can be considered a combination of the outcomes at the high and low end of the range. In the WTA
case, an offer at the high end of the range results in the subject receiving the IV with certainty because a
transaction never occurs. At the low end of the range, the payoff reduces to the underlying market offer
distribution, which is typically uniform, since a transaction always occurs. For a uniform distribution, we
show that an offer equal to the IV corresponds to a local variance minimum; however, an offer at the high
end of the support set, with zero variance, is always the global minimum.

This result opens the possibility that offers away from the IV could maximize subject’s utility by choosing
a payoff profile exhibiting a relatively greater degree of certainty (or narrower outcome dispersion) at a
lower expected value than the risk-neutral strategy. Since the selection of the upper bound of the support
set establishes this expected value and variance tradeoff, we empirically test this theoretical insight in a
controlled experiment. In our design, we utilize the BDM mechanism to elicit valuations for an item that
subjects can redeem for $3, the IV, by asking for the minimum amount of money required to sell the card
back to the experimenter. We aim to isolate the effect of changing the payoff variance on valuations by
shifting the upper bound of the support set while holding all other factors constant (e.g., item redemption
value, support set lower bound at $0). Figure 2 illustrates the expected value and variance in our three
treatments with the $4, $6, and $12 upper bounds.

6.2 Primary Analysis

• Mean Bid by Treatment:

Let µi, for i ∈ {4, 6, 12} denote the mean WTA value for the treatment representing the upper bound
of the support set distribution of $4, $6, and $12, respectively.

H1: µ12 > 3

H2: µ6 = 3

H3: µ4 < 3

H1 and H3 are evaluated using one-sided, single-sample Wilcoxon signed-rank tests (Wilcoxon, 1945)
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with H2 evaluated with a two-sided, single-sample Wilcoxon signed-rank test. We adopt the Holm-
Bonferroni step-down procedure for multiple hypothesis testing (Holm, 1979).

We first test whether exogenously changing the support set upper bound is associated with deviations
in the offer distribution away from the IV. Our primary analysis tests this in terms of the central
tendency of the WTA distributions across rounds while our robustness checks, outlined below, test for
changes in behavior via regression analysis, difference in proportions, WTA distribution skewness.

Given that we expect a majority of the sample to be risk-averse, we anticipate the behavior of that group
to determine the central tendency of the offer distribution. In the $12 treatment, the payoff variance
function declines steeply to zero for offer values toward the high end of the support set, indicating a
large reduction in outcome variability for a small reduction in expected payoff value. If risk-averse
subjects display a level of variance aversion, we would then expect a higher concentration of offers
above the IV in the $12 treatment (i.e. more overbidding) because they achieve utility maximization
at an offer above the IV with a slight decrease in expected payoff and a larger decrease in payoff
variance while risk-tolerant participants would bid below the IV because the variance function achieves
its maximum at $0 and is strictly decreasing over the [0, IV ] interval.

Similarly, the variance function in the $6 upper bound treatment is decreasing over a relatively wider
interval of offers greater than the IV ([4.25, 6]); however, the lesser degree of curvature created by a
support set symmetric about the IV creates a correspondingly worse risk/reward tradeoff than the $12
treatment, implying the bid distribution should be more symmetric about the IV as well. Accordingly,
we predict µ6 = 3 as we do not expect the average to differ significantly from the IV.

In the $4 treatment, the flatter curve results in the least favorable mean-variance profile above the
IV, so risk-averse subjects should provide valuations closer to the expected-value maximum at the IV,
while risk-tolerant participants should still tend to bid below the IV, causing the overall sample average
to reflect underbidding.

• Secondary Analyses:

1. Alternative Mean Bid Tests by Treatment:

We also plan to conduct pairwise tests for statistically significant differences among the mean bids
by treatment. This enables us to make direct comparisons among the treatments in addition to
the means relative to the IV:

µ12 > µ6 > µ4

These tests are evaluated using one-sided, paired Wilcoxon signed-rank tests (Wilcoxon, 1945).

2. Regression Analysis:

As a robustness check of the primary analysis, we will use an OLS regression including additional
demographic control variables. Denote the $4, $6, and $12 upper bound treatments by i ∈
{4, 6, 12}, respectively, and the j-th subject’s WTA in the i-th treatment as WTAi,j . We will
estimate the following specifications:

WTAi,j = α0 + α1d4,j + α2d12,j + εi,j (4)

WTAi,j = α0 + α1d4,j + α2d12,j + δXj + εi,j (5)

where di,j is a binary variable taking the value of 1 for the j-th subject’s offer in treatment i for
i ∈ {4, 12}, omitting the $6 round to serve as the baseline and Xj represents a vector of observable
demographic controls for subject j including age, gender, ethnicity, and income. The coefficients
in Equation (4) then represent the unconditional mean offers by treatment and, in Equation (5),
the conditional average controlling for demographic factors. We anticipate the predicted results
of our primary analysis to hold, controlling for demographic factors:
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α1 < 0

α2 > 0

These hypotheses are evaluated first by F-tests for joint significance and then by t-tests with
standard errors clustered at the individual level in both sets of tests.

3. Difference in Proportions:

The use of only the WTA distributions’ means, either unconditional or conditional, in identifying
treatment effects could conceal offsetting effects above and below the induced value. As an
additional robustness check, we test the hypothesis that the probability of an offer above the
induced value is increasing across treatments. The approach is akin to the one adopted in Knetsch
and Sinden (1984), which examines the change proportion of subjects willing to accept a given
monetary offer in exchange for different endowed items. The difference in proportions test enables
us to identify a shift in the number of subjects with offer levels above the IV (overbidding) in the
case where the overall WTA distribution mean remains unchanged if the portion of the sample
bidding below the IV moves closer to zero (underbidding).

P (WTA12,j > 3) > P (WTA6,j > 3)

P (WTA6,j > 3) > P (WTA4,j > 3)

P (WTA12,j > 3) > P (WTA4,j > 3)

These hypotheses are evaluated jointly with Cochran’s Q test with pairwise comparisons using
one-sided McNemar tests (Cochran, 1950; McNemar, 1947).

4. Skewness:

Let γi, i ∈ {4, 6, 12} denote the skewness of the bids in each treatment.

γ12 > 0

γ6 = 0

γ4 < 0

These hypotheses are evaluated using the skewness-specific statistic from D’Agostino’s K2 test
for normality (D’agostino et al., 1990). We conduct one-sided tests in the $12 and $4 treatments
and utilize a two-sided test in the $6 treatment to align with our predictions.

The expected payoff function is symmetric about the IV; however, payoff variance is not. Although
several other theories offer explanations for observed over- and underbidding in BDM settings, the
mean-variance framework suggests the extreme values of the variance function at the end points
of the support set could result in an asymmetric offer distribution. At an offer of $0, the variance
simplifies to that of the underlying uniform posted price which is the maximum point in all 3
treatments. An offer equal to the upper bound of the support set reduces the variance to zero
as a subject will always retain their item to be redeemed for the IV. If risk-aversion extends to
variance in this manner, we would then expect a right-skewed offer distribution when the variance
curve offers a sufficient risk/reward tradeoff. Alternatively, under a flatter variance curve, risk-
tolerant subjects with offers between $0 and the IV would cause a left-skewed WTA distribution.
Correspondingly, we hypothesize γ4 < 0, γ6 = 0, and γ12 > 0.

6.3 Heterogeneity Analyses and Robustness Checks

1. Mean Bids by Risk Preference:

In the primary analysis, we derive predictions from the assumption that subjects respond heteroge-
neously to changes in the upper bound of the support set according to their risk preferences. Using
payoff variance as a proxy for the risk of a given bid, risk-averse subjects should exhibit a tendency
to overbid by choosing offer values closer to the upper bound that yield a more certain outcome.
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Conversely, risk-tolerant subjects are expected to show a preference toward the higher-variance payoff
profiles of offers closer to the support set’s zero lower bound, leading to underbidding on average.

We utilize the BRET responses to classify each subject as risk averse, risk tolerant, or risk neutral.
The selection of 50 boxes is risk neutral, maximizing the task’s expected value (Crosetto and Filippin
(2013)). Responses below 50 then represent risk-averse behavior with responses above 50 corresponding
to risk-tolerant preferences. Let kj denote the number of boxes selected by the j-th subject in the
BRET. We define subjects with kj < 50 to be risk averse and subjects with kj > 50 to be risk tolerant.
Then, let µi,RA and µi,RT for i ∈ {4, 6, 12} denote the mean bid by treatment level for each risk
preference category. In all cases, we expect the average of the risk-averse subjects’ offers to exceed
that of the risk-tolerant subjects and test:

µ12,RA > µ12,RT

µ6,RA > µ6,RT

µ4,RA > µ4,RT

As discussed in the power analysis, we set our 300 subject target to conduct the secondary heterogene-
ity analyses. Based on our review of studies using the BRET that report response distributions, we
expect approximately 199 risk-averse subjects, 73 risk-tolerant subjects, and 29 risk-neutral subjects
which would provide enough risk-tolerant individuals to adequately power the heterogeneity analyses
(Crosetto and Filippin, 2013; Gioia, 2017; Soetevent and Romensen, 2017). While the figure is in-
cluded for reference, we exclude subjects with risk-neutral responses of k = 50 in the BRET from the
heterogeneity analyses but retained in the aggregate treatment tests.

This hypothesis is evaluated using the Mann-Whitney U test (Mann and Whitney, 1947). For a
robustness check, we employ an alternative risk preference scheme using the risk self-evaluation question
from the German Socio-Economic Panel survey (Dohmen et al., 2011). Subjects are asked to report
how willing they are to take risks on a scale of 0 to 10. We then classify responses below 5 as risk
averse and responses above 5 as risk tolerant and perform a second set of tests on the resulting mean
bids by treatment.

2. Heterogeneity Regression Analysis:

Similar to the primary analysis, we estimate a linear regression model using OLS, incorporating addi-
tional control variables to serve as a robustness check for the unconditional difference in means test.
Accordingly, we estimate the specifications:

WTAi,j = α0 + α1d4,j + α2d12,j + α3kj + δXj + εi,j (6)

WTAi,j = α0 + α1d4,j + α2d12,j + α3kj + α4d4,jkj + α5d12,jkj + δXj + εi,j (7)

WTAi,j = α0 + α1d4,j + α2d12,j + α3(kj − 50) + α4d4,j(kj − 50) + α5d12,j(kj − 50)

+ α6Dj + α7Dj(kj − 50) + α8Djd4,j + α9Djd12,j + δXj + εi,j (8)

with Dj is a binary variable indicating RT subjects i.e., kj > 50 and all other variables maintain their
definitions. We again use the $6 treatment as the baseline for the binary variables. Equation (6)
enables us to test for treatment and risk type effects as measured by the BRET on offer values while
the inclusion of the di,jkj interaction terms in Equation (7) indicates whether that effect varies across
treatments, holding other factors constant.

Equation (8) uses the Dj binary variable to explore heterogeneous changes in WTA based on their risk
classification. We center the kj variables in Equation (8) to reduce inflation in coefficient standard
errors due to multicollinearity as Dj is a function of kj . Running a comparable regression on the $3
IV treatments in Drichoutis et al. (2025) with uniformly distributed random values used for simulated
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BRET responses reduced the mean variance inflation factor (VIF) from 7.9 to 4.7 and decreased the
individual coefficient VIFs related to the Dj and kj from a range of approximately 23 to 28 to a range
of 12 to 15. A simulated normal distribution of BRET responses reduced the VIFs even further.

Hypothesis
α1 < 0
α2 > 0
α3 < 0
α4 < 0
α5 < 0
α6 > 0
α7 < 0
α8 > 0
α9 > 0

Table 1: Hypotheses for the heterogeneity regression analysis

Table 1 presents our hypotheses by specification. We focus on Equation (7) as the richest model
for inferential testing but will report results for all three regressions. The α1 and α2 predictions are
consistent with the primary hypothesis in that α1 < 0 implies lower WTA values in the $4 upper bound
treatment than the $6 treatment. Similarly, α2 > 0 implies higher WTA values in the $12 treatment
than the $6 treatment. We also predict WTA to be decreasing in risk tolerance (i.e., larger values of
kj), reflected by α3, α4, and α5, as offers closer to the zero lower bound result in larger payoff variance.
In Equation (8), we expect α6 > 0, α7 < 0, α8 > 0, and possibly α9 > 0, reflecting higher baseline bids
and stronger sensitivity to low- and high-variance treatments among risk-tolerant participants.

These hypotheses are evaluated first by F-tests for joint significance and then by t-tests with standard
errors clustered at the individual level in both sets of tests.

3. Difference in Bid Distributions:

A systematic behavioral pattern in response to a shift in payoff variance would be indicative of a
connection between over- and underbidding in the BDM mechanism and risk preferences; however,
identical distributions suggest some alternative causal mechanism. Thus, we test to determine whether
offers from risk-averse and risk-tolerant subjects follow the same distribution. We adopt the same
risk classification procedure using BRET responses. Denote the distribution of WTA values for risk-
averse and risk-tolerant subjects for each treatment by WTAi,RA and WTAi,RT , respectively, for
i ∈ {4, 6, 12}. Similar to the mean bid tests, we will compare results under the alternative classification
scheme based on the risk self-evaluation question as a robustness check. We test:

WTA12,RA ̸= WTA12,RT

WTA6,RA ̸= WTA6,RT

WTA4,RA ̸= WTA4,RT

These hypotheses are evaluated with the Kolmogorov-Smirnov test (Massey Jr, 1951).

4. Heterogeneity in Treatment Effect Size:

Because the global maximum and minimum of the variance function occur at the lower and upper
bounds of the support set, respectively, we expect subjects with greater risk preference magnitude to
exhibit larger absolute treatment effects. We approach this hypothesis in two distinct manners. First,
we test for a positive correlation between the each subject’s distance from risk neutrality in the BRET
and their observed treatment effects in the BDM task. For the j-th subject, let |kj − 50| represent
the magnitude of the risk preference, and let |TEi,j | = |WTAi,j −WTA6,j | for i = {4, 12} denote the
absolute treatment effects, again using the $6 round as the baseline. We test:
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Corr(|kj − 50|, |TE4,j |) > 0

Corr(|kj − 50|, |TE12,j |) > 0

using the Pearson correlation test with the Spearman rank test as a robustness check against non-
normal distributions of |kj − 50| and the absolute treatment effects (Pearson, 1895; Spearman, 1904/
1987).

We then use an OLS regression-based approach to test the conditional relationship between risk pref-
erence magnitude and absolute treatment effect size. We estimate the model:

|TEi,j | = β0 + β1|kj − 50|+ δX+ εi,j (9)

β1 > 0

by a t-test with standard errors clustered at the individual level.

5. Consistency of Risk Preference Measures:

Adopting a utility functional form in the financial economics literature, we model subject utility as
the second degree Taylor expansion of payoff moments (Markowitz, 1952; Pratt, 1978; Garlappi and
Skoulakis, 2011). Let subject utility for the elicited WTA value in the i-th round by the j-th subject
be represented by:

u(WTAi,j) = µWTAi,j +
λi,j

2
σ2
WTAi,j

(10)

where µWTAi,j and σ2
WTAi,j

are the expected value and variance of the payoff when offering $WTA,
respectively, and λi,j is the coefficient of interest. Assuming that a subject’s offer represents their
utility-maximizing choice across the set of feasible payoff mean-variance combinations in each treat-
ment, the variance coefficient λ captures the impact of a change in variance on utility levels. When the
offer is not equal to the IV (i.e., WTA ̸= $3), the value of λ implied by a given offer can be uniquely
identified by the utility function’s first order condition

λ∗ = −2
∂E(π(WTA))

∂WTA
· ∂WTA

∂V ar(π(WTA))
(11)

where π(WTA) is the payoff function evaluated at WTA and E(·) & V ar(·) are the typical expectation
and variance operators. Thus, λi,j becomes the Arrow-Pratt risk aversion measure in this setting.
Given the parameters in each treatment, we proceed to calculate each λi,j . When WTAi,j = $3, λi,j

is undefined as risk-neutral observed behavior can be consistent with a range of actual risk preferences
(Pratt, 1978; Rabin, 2000). Figure 3 presents the values of λ implied for every bid value in each
treatment.

To assess whether the variance preferences implied by subjects’ choices are connected with our measures
of risk preferences, we test the correlation between the number of boxes collected in the BRET by the
j-th subject, kj , and λi,j for each treatment. In computing the average of λ, we omit observations
where WTA = $3. If a subject offered $3 in all three rounds, then that subject is dropped entirely
from the correlation test. We hypothesize that the correlation will be positive under the expectation
that risk-averse subjects will select both small values of k and WTA such that λ < 0 while risk-tolerant
subjects will select both large values of k and WTA such that λ > 0. Therefore, we test:

Corr(λ12,j , kj) > 0

Corr(λ6,j , kj) > 0

Corr(λ4,j , kj) > 0
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Figure 3: The vertical asymptotes reflect the point at which the variance function begins to slope downward
toward zero. Positive values of λ reflect risk-tolerant behavior, and negative values indicate risk-averse
behavior.

This is evaluated using the Pearson correlation test with the Spearman rank test as a robustness check
against non-normal distributions of λi,j and kj (Pearson, 1895; Spearman, 1904/1987). As a robustness
check, we conduct the same tests of correlation with λi,j and the responses to the risk self-evaluation
question.

6. Mean-Variance Regression Analysis:

Let µi,j and σ2
i,j denote the expected value and variance of the payoff function evaluated at WTAi,j , i ∈

{4, 6, 12} for each subject j, and let kj represent the j-th subject’s BRET response. As µi,j and σ2
i,j

are deterministic functions of WTAi,j , the two variables along with the kjσ
2
i,j interaction term are

endogenous in any regression specification unless addressed. We leverage the exogenous variation in
the support set upper bound to enable parameter identification by using the interaction effects between
the treatment dummy variables and kj as a set of four instruments for the three endogenous variables.
Adopting a two-stage fixed effects approach, our first stage regressions are:

µi,j = τ0 + τ1d4,j + τ2d12,j + τ3kjd4,j + τ4kjd12,j + ηj + εi,j (12)

σ2
i,j = τ0 + τ1d4,j + τ2d12,j + τ3kjd4,j + τ4kjd12,j + ηj + εi,j (13)

kjσ
2
i,j = τ0 + τ1d4,j + τ2d12,j + τ3kjd4,j + τ4kjd12,j + ηj + εi,j (14)

where di,j are indicator functions for offers in rounds with the upper bound of the support set at
i = {4, 12}, treating the $6 round as the baseline, and ηj represents individual-level fixed effects. The

first-stage regressions yield estimates for µ̂i,j , σ̂
2
i,j , and

ˆkjσ
2

j,k to be used in the second stage. We then
estimate the following fixed-effects model, employing WTAi,j as the dependent variable and controlling
for fixed within-subjects factors:

WTAi,j = θ0 + θ1µ̂i,j + θ2σ̂
2
i,j + θ3 ˆkjσ

2

i,j + ηj + εi,j (15)

11



where ηj represents individual-level fixed effects. While the impact of risk preferences is implicitly
included in the fixed effects term, the interaction effect with the variance term is identifiable. The
partial effects indicate how subject WTA changes with a shift in the first two moments of the BDM
payoff, controlling for individual-specific factors via ηj . Other factors held constant, we expect WTA
to be increasing in expected payoff and decreasing in payoff variance with larger values of kj (i.e., more
risk-tolerance) attenuating the negative variance effect. Accordingly, we test:

θ1 > 0

θ2 < 0

θ3 > 0

These hypotheses are evaluated first by F-tests for joint significance and then by t-tests with standard
errors clustered at the individual level in both sets of tests. As a robustness check, we also estimate
the model with a vector Xj of observable demographic factors (age, gender, ethnicity, income) in lieu
of the fixed effect term.

6.4 Exploratory Analyses

Our study includes several questions aimed at gaining insights into subjects’ decision-making processes in
the BDM task. We plan to investigate potential relationships between WTA and focuses on increasing the
probability of “winning,” maximizing payoff value, and desiring to control the task outcome. While not the
primary focus of this paper, responses to these questions may inform future work. One of the questions is an
open-ended response box requesting subjects to outline their strategy explicitly. Depending on the richness
of the answers, we plan to use the techniques outlined in Hassan et al. (2025) to identify trends in text
responses and establish behavioral patterns.

We also placed hidden text in the HTML of one page that is invisible to subjects and de-emphasized for
screen-reading software but able to be parsed by AI/LLM agents and other bots. That text provides specific
instructions on how to answer one question in a manner that, if followed, will likely enable us to identify the
respondent as non-human. We have also enabled Qualtric’s Captcha bot scoring system. With these two
metrics, we hope to provide insights into methods for improving data quality in online experimental surveys
and the portion of responses flagged as likely automated.

Our experimental survey requires subjects to correctly answer 11 comprehension questions covering both
the structure of the BDM mechanism as well as payoff calculations in a variety of scenarios. We included the
extensive suite of questions to improve subject understanding of the task; however, we cannot ensure with
certainty that correct responses indicate understanding as opposed to trial and error. As a consequence, we
track the number of incorrect attempts at answering the comprehension questions and plan to explore the
robustness of the analyses to varying exclusion criteria based on the comprehension questions.

6.5 Future Extensions

Experimental results in line with the hypotheses outlined above would provide evidence that the selection
of the upper bound of the support set in BDM experiments predictably changes participants’ tendencies to
offer valuations above or below the IV. Pending the initial results with subsequent analysis and feedback,
we may also perform a second iteration of this experiment wherein changes in the payoff variance function
are achieved through varying the IV at $3, $6, and $9 against a static $12 upper bound which produces
similar risk/reward profiles to this experiment as the slope of the variance curve is determined by the relative
placement of the IV in the range from 0 to the upper bound. Holding the offer range constant between rounds
would help to distinguish a variance-related treatment impact on WTA from alternative causal effects like
anchoring and midpoint biases (Tversky and Kahneman, 1974; Thomas and Kyung, 2019; Crosetto et al.,
2020).
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7 Mathematical Appendix

In this section, we provide the derivations of (i) the payoff expected value and (ii) the payoff variance function
and (iii) the formulae used for the implied risk aversion coefficients, λ, in Heterogeneity Analysis 5.

7.1 Payoff Expected Value

Consider the WTA BDM setting for an induced value item. Let IV represent the item’s induced value,
x represent a realization from the continuous uniform distribution on [α, β], or the experimenter’s selected
support range for the randomly generated market offer, and b ∈ [α, β] represent a subject’s bid or offer. The
probability density function of x is

f(x) =

{
1

β−α for α ≤ x ≤ β

0 otherwise.
(16)

In the WTA version of the BDM mechanism, the subject redeems the item for IV if their offer is less
than or equal to the randomly generated market offer, x. Otherwise, the subject sells the item and receives
x. We can then define the payoff function as

π(b) =

{
IV for x ≤ b

x for x > b.
(17)

The expected value of π(b) is then

E[π(b)] =
∫ β

α

π(b)f(x)dx =

∫ b

α

IV

β − α
dx+

∫ β

b

x

β − α
dx =

IV (b− α)

β − α
+

β2 − b2

2(β − α)
(18)

which simplifies to

E[π(b)] =
2IV (b− α) + β2 − b2

2(β − α)
. (19)

7.2 Payoff Variance

The variance of the payoff function at a given offer is defined by Var(π(b)) = E[π(b)2] − (E[π(b)])2. So we
have

E[π(b)2] =
∫ b

α

IV 2

β − α
dx+

∫ β

b

x2

β − α
dx. (20)

Then, ∫ b

α

IV 2

β − α
dx =

IV 2(b− α)

β − α
, (21)

and ∫ β

b

x2

β − α
dx =

β3 − b3

3(β − α)
. (22)
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Therefore,

E[π(b)2] =
IV 2(b− α)

β − α
+

β3 − b3

3(β − α)
=

3IV 2(b− α) + β3 − b3

3(β − α)
, (23)

implying

Var(π(b)) =
3IV 2(b− α) + β3 − b3

3(β − α)
−

(
2IV (b− α) + β2 − b2

2(β − α)

)2

. (24)

7.3 Risk Aversion Coefficient

Consider a subject with initial wealth w0 with π(b) representing the random payoff in the previously described
WTA BDM mechanism, and let µb = E[π(b)] and σ2

b = Var(π(b)). Assume there exists some C3 utility
function u(·) over final wealth states. The second-order Taylor expansion of u(w0+π(b)) around w∗ = w0+µb

is

u(w0 + π(b)) ≈ u(w∗) + u′(w∗)(π(b)− µb) +
u′′(w∗)

2
(π(b)− µb)

2. (25)

Then expected utility is approximated by

E[u(w0 + π(b))] ≈ u(w∗) + u′(w∗)E[π(b)− µb] +
u′′(w∗)

2
E[(π(b)− µb)

2] ≈ u(w∗) +
u′′(w∗)

2
σ2
b . (26)

Taking a first-order expansion of u(w∗) around w0 yields

u(w∗) ≈ u(w0) + u′(w0)µb (error O(µ2
b)), (27)

and the zeroth-order expansion of u′′(w∗) around w0 is

u′′(w∗) ≈ u′′(w0) (error O(µb)) (28)

so by substituting Equations (27) and (28) back into Equation (26) shows

E[u(w0 + π(b))] ≈ u(w0) + u′(w0)µb +
u′′(w0)

2
σ2
b . (29)

Dropping the u(w0) term which does not depend on b and normalizing by dividing through by u′(w0) > 0,
a positive affine transformation that does not impact the location of the utility maximizing bid, then gives

E[u(w0 + π(b))] ≈ µb +
u′′(w0)

2u′(w0)
σ2
b (30)

which shows λ in Equation (10) is equivalently u′′(w0)
u′(w0)

or the negative of the Arrow-Pratt absolute risk

aversion coefficient (Pratt, 1978).
Assuming a subject’s bid indicates a preference over the available mean-variance combinations offered in

a given BDM round, let b∗ = argmax
b

E[u(w0 + π(b))]. Then, the implied λ∗ is the value that satisfies the

first order condition in maximizing Equation (30):

λ∗ =
−2µ′

b

(σ2
b )

′ = −2
∂E[π(b)]

∂b
· ∂b

∂Var(π(b))
(31)

as given in Equation (11). The negative sign follows the convention that u′′(w0) < 0 under risk aversion,
implying λ∗ > 0 represents risk-tolerant preferences while λ∗ < 0 represents risk-averse preferences. From
Equation (19),

∂E[π(b)]
∂b

=
IV − b

β − α
(32)

and from Equation (24),

∂Var(π(b))

∂b
=

IV 2 − b2

β − α
− b3 − 3IV b2 + (2IV 2 + 2IV α− β2)b+ IV β2 − 2IV 2α

(β − α)2
(33)
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which simplifies to
(IV − b)(b2 + (β − α− 2IV )b+ (IV β + IV α− β2))

(β − α)2
. (34)

Substituting Equations (32) and (34) back into Equation (31), we have

λ∗ =
−2(β − α)

b2 + (β − α− 2IV )b+ (IV β + IV α− β2)
. (35)

We use this Equation (35) to calculate the values of λi,j for correlation testing in the Consistency of Risk
Preference Measures analysis.
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