
Pre-Analysis Plan for “Taxing Income: Scientific

Uncertainty versus Normative Disagreement”

Matthias Rodemeier and Gregory Sun

March 26, 2025

1 Introduction

Since the pioneering work of Mirrlees (1971), optimal income taxation has become a well-

developed field of study within economics. Over the years, a large number of theoretical

elaborations of the basic framework have contributed to a deep understanding of the salient

trade-offs faced by a government in designing their income tax system while empirical studies

have provided a wealth of evidence on the likely causal impacts of tax policy reform. In light

of the scientific maturity of the field, it is desirable to develop methodology for synthesizing

the accumulated knowledge from decades of research on optimal income taxation and to take

stock of what this accumulated knowledge can teach us about policy-making. This paper

represents a first step towards this end. We focus on the literature which estimates elasticities

of taxable income by looking at bunching around “notches” and “kinks” in many real-world

tax schedules, which represents arguably the cleanest causal evidence of elasticities of taxable

income. We synthesize information in this literature by first developing a structural, Bayesian

meta-analysis framework and using this framework along with a hand-crafted dataset of

existing studies using tax kinks/notches to identify structural primitives of an optimal income

taxation model in the spirit of Mirrlees (1971).

Our meta-analysis produces a mean estimate of the elasticity of taxable income implied

by the literature, and arguably more importantly, also produces uncertainty estimates sur-

rounding this mean estimate. However, to translate this positive information into a set of

policy implications, these elasticities must be integrated with information about normative

judgements about which objectives are desirable. We thus next survey the general US public

to elicit tastes for redistribution. Comparing the variation in redistributive tastes of with

the uncertainty estimates implied by our meta-analysis, we ask a central but unexplored
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question: To what extent does policy disagreements stem from scientific uncertainty as op-

posed to from normative disagreement? We argue that the answer to this question may have

important implications for how economists communicate their findings with policymakers

and the general public.

1.1 Meta Analysis Details

We begin our study by generalizing the basic kink/notch framework pioneered by Saez (2010)

to allow for non-constant elasticities of taxable income (ETI). Within this generalized frame-

work, we formalize what we view as a “folk wisdom” in the literature that even if elastic-

ities are not literally constant across the income distribution, the parametric specifications

adopted in the literature approximately estimate the local ETI around the kink/notch under

study.

Next, given a collection of pointwise elasticity estimates at various incomes, we provide a

framework that integrates information from these various estimates into a single, coherent,

structural model of income and how it reacts to tax incentives. We conceptualize the main

structural parameter of interest as being a (continuous) function mapping location within the

income distribution to ETIs around that income level. We can then think about uncertainty

over this structural primitive in terms of a probability distribution over continuous functions

representing the ETI function. Given a “prior” over the ETI function, we can then think of

the scientific process as forming “posterior” updates based on the observations of pointwise

ETI estimates found in the literature. Within machine-learning, Gaussian Processes (GPs),

as implemented for instance by Matthews et al. (2017), are a flexible methodology for param-

eterizing probability distributions over the infinite dimensional space of continuous functions

and thus provides precisely the language to formalize this idea. We thus theoretically adapt

the GP framework for our purposes before turning to the data and using it to draw from a

posterior distribution over the ETI function given our meta-analytical data.

1.2 Survey Experiment

We combine our structural Bayesian meta-analysis framework with survey data to generate

novel insights about the scientific and normative drivers of disagreement in what optimal tax

policy should look like. In particular, we survey the general public and elicit i) preferences

over redistribution, ii) beliefs about elasticities of taxable income, iii) uncertainty about

those beliefs about elasticities of taxable income.

After exploring normative disagreements and the data on elasticities of taxable income, we

next explore the policy implications of these disagreements. Specifically, for different values of
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redistributive tastes elicited in the population, and for different draws of elasticity of taxable

income from the posterior distribution of our meta-analysis, we compute an optimal income

tax schedule. We then ask whether, at various income levels, whether the optimal marginal

tax rate varies more fixing redistributive tastes, but sampling from the posterior distribution

of elasticites or varying redistributive tastes but fixing a single elasticity estimate.

The rest of this Pre-Analysis Plan elaborates on our empirical strategy and the structural

estimation.

2 Descriptive Analysis

The data from our experiment will contain columns depicting:

1. Respondent identifier

2. Respondent demographics

3. Income of recipients 1 and 2

4. Cost of transfers 1 and 2

Our descriptive analysis will seek to answer the following questions: i) by how much on

average do people trade off transfers to different recipients of different income groups, ii)

how much heterogeneity in general is there in redistributive preferences, and iii) how does

this tradeoff vary by observable demographic information.

We can answer question 1 using a simple linear regression model. Specifically, our trans-

fers will vary in terms of the income of recipients as well as in the transfer amount to each

of the two hypothetical recipients, j ∈ {1, 2}. Denote by Iiqj the income of the jth recipient

in question q faced by survey-taker i. Similarly, let Tiqj denote the transfer amount. Finally,

let Yiq be an indicator such that Yiq = 1 if survey-taker i chooses to give the transfer to

household 1 on question q. Then we will estimate a linear regression model of the form

Yiq = α + β[log(Tiq1/Tiq2)− γ[Iiq1 − Iiq2]] + εiq.

The above model will be estimated by an OLS regression of Yiq on log(Iiq1/Iiq2) and [Tiq1 −
Tiq2] and transforming the resulting coefficients accordingly.

The interpretation of the above coefficients is as follows: α and β are nuisance parameters.

The intercept α accounts for any bias towards always picking the first recipient (note that

by our randomization, the actual characteristics of households 1 and 2 are drawn from the

same distribution, so α = 0.5 indicates no bias). The slope β measures how sensitive choices
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are to recipient characteristics. Finally, γ is the parameter of interest and characterizes the

tradeoff between giving a larger transfer and giving a transfer to a preferred recipient. For

example, if the transfer given to household 1 increases by 1% (log(Tiq1/Tiq2) increases by

0.01, then the income difference between household 1 and 2 must also increase by 0.01/γ in

order to leave survey respondent behavior unchanged. Higher values of γ thus correspond

to survey takers who are more responsive to transferring money towards the poor. As will

be seen in the next section, it will in particular relate to the CARA parameter describing

redistributive preferences.

To answer questions ii) and iii), we estimate a random coefficients model of the form

Yiq = α + β[log(Tiq1/Tiq2)− γi log(Iiq1/Iiq2)] + εiq, γi = θ′Xi + δi.

Here, Xi is a vector of demographic characteristics asked about in the survey. To answer

question ii), we report the overall Var(γi) implied by model estimates, as well as the implied

“R2” of the regression of γi on Xi. We will also report the θ coefficients, which tells the

slope of the relationship between redistribution preferences and Xi.

In addition to asking about redistribution preferences. We also ask individuals to try to

predict the behavior response to changes in a 50% decrease in tax burden. We will report

an OLS regression of these predictions on the same demographic observables Xi and also

report mean values of this quantity.

3 Structural Analysis

We model survey-takers as making choices about their preferred redistribution according to

marginal social welfare weights parameterized by a CARA function in baseline consumption.

More specifically, let i index an individual survey taker. The marginal social welfare weights

of individual i are assumed to be of the form

gi(C) = exp(−γiC)

where C is baseline consumption and γi is the absolute risk aversion parameter of individual

i. A hypothetical question in our survey asks the following question: consider two households

who respectively have an income after taxes and transfers from the government of C1 and C2.

Would you rather transfer T1 to household 1 or T2 to household 2? If the survey taker answers

this question according to her re-distributive preferences, she would transfer to household 1
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over household 2 if and only if

T1 exp(−γiC1)− T2 exp(−γiC2) > 0

We allow for the possibility that there is some cognitive noise in survey responses so in

reality, the survey taker chooses redistribution to household 1 if and only if

T1 exp(−γiC1)εiq1 > exp(−γiC2)εiq2,

We assume that for each individual i, log εiq1, log εiq2
i.i.d.∼ T1EV (σi). Here, σi is a scale

parameter on the T1EV distribution, which may vary across individuals.

Taking logs and dividing both sides of the inequality by σi, the above is equivalent to

individuals choosing to redistribute to family 1 if and only if

−γi
σi

(C1 − C2) +
1

σi

[log(T1)− log T2] +
1

σi

[log εiq1 − log εiq2] ≥ 0

We divide by σi in deriving the above expression because the distributional assumption on

the ε’s imply that the last term above follows a standard logistic distribution, hence our

model boils down to a fairly standard random coefficients logit model without an intercept.

The ratio between the random coefficient in front of (C1−C2) and the random coefficient in

front of [log(T1)− log T2] represents individual-level redistributive preference.

Before describing estimation, we discuss the sampling distribution of the data conditional

on individual level parameters γi and σi. As a reminder, our data comes from a survey

experiment where we ask respondents 10 questions where we randomly sample values of

(C1, C2, T1, T2). Let the draws of question parameters be given by

Xi ≡ (C1
1i, C

1
2i, T

1
1i, T

1
2i, . . . , C

10
1i , C

10
2i , T

10
1i , T

10
2i ).

The outcomes of the survey can be represented by a vector of dummy variables

Yi = (Yi1, . . . , Yi10),

where Yiq represents whether or not survey respondent i chose to distribute to household 1

on question q. The likelihood function conditional on Xi and the individual-level parameter
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values is given by

L(Yi|Xi, γi, σi) =
10∏
q=1

exp
(

−γi(C
q
1i−Cq

2i)−log(T q
1i−T q

2i)

σi

)
1 + exp

(
−γi(C

q
1i−Cq

2i)−log(T q
1i−T q

2i)

σi

)
To estimate the distribution of γi as flexibly as possible, we approximate the nonparametric

joint distribution of (γi, σi) as being supported on a fine grid of values, and estimate this

model using a variant of the approach proposed in Fox et al. (2011) (FKRB).

The basic idea behind the FKRB estimator is to parameterize the joint distribution of

(γi, σi) as being supported on some grid of the form γ × σ. Given this support restriction,

the joint distribution can be represented by the probability mass placed on each support

point. Specifically, let θ be a |γ| × |σ|, where each entry θa,b represents the probability

Pr[γi = γa, σi = σb]. The laws of probability imply that θa,b ≥ 0 and
∑

a,b θa,b = 1, but no

further constraints on the entries of θ. For a given guess of θ, the likelihood function for a

given survey participant is thus given by

L(Yi|Xi,θ) =
∑
a

∑
b

θabL(Yi|Xi, γa, σb).

The basic idea behind our estimation procedure is thus as follows. First, using a procedure

detailed below, we construct a data-driven set of gridpoints, γ and σ. Second, we estimate

θ by maximizing a penalized log-likelihood, subject to the constraints on θ described above.

θ̂ = argmax
θ,σ

N∑
i=1

logL(Yi|Xi,θ) + λ
41∑
a=2

(∑
b

θa,b

)2

s.t. θa,b ≥ 0,∀a, b,
∑
a,b

θa,b = 1.

The intuition behind the penalty term is that the standard FKRB specification has difficulty

distinguishing random coefficients which are too similar to one another. Heiss et al. (2022)

propose the above penalty term to help smooth over these difficulties by encouraging the

estimator to pick estimated distributions of γi that places similar mass on similarl γ’s. This is

akin to the use of kernels to smooth out estimated densities when performing kernel density

estimation. In line with this intuition, we pick our penalty parameter to decay with sample

size according to λ ∝ N−1/5.

3.1 Choice of Grids

To apply FKRB-style estimators, we must choose the grid of points which (γi, σi) is supported

on. There is little formal guidance in the literature on how to do this, so we pick a data-
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dependent procedure based on what seemed reasonable in a pilot version of our study, which

we describe in this subsection.

In the first step, we fit a standard logistic regression without an intercept. The outcome

variable is an indicator for whether or not redistribution to family 1 was chosen, and the

regressors are (C1 − C2) and [log(T1)− log T2].

Let γ̄ be the ratio of the coefficients from this regression, and let σ̄ be the reciprocal of the

coefficient in front of [log(T1)−log T2]. Let γ̃ be a grid of 40 points that is evenly spaced in log

units between γ̄/10 and 40γ̄. Let γ = (0, γ̃, 100).1 Similarly, let σ = (σ̄/3, (σ̄/3+2σ̄)/2, 2σ̄)

be a grid of error variances. Then we assume that the joint distribution of (γi, σi) is supported

on γ × σ. This discrete distribution can be represented by a matrix θ where θab ≡ Pr[γi =

a, σi = b], where θab ≥ 0 for all a, b and
∑

a,b θab = 1.

4 Sample Size

We initially plan on rolling out the experiment to 2,500 survey participants. This should be

sufficient to estimate heterogeneity in the population. In our pilot experiment, we estimate

that the 10th percentile of log γ is -10, while the 90th percentile is -8. We aim to collect a large

enough sample size to detect this difference with high probability. With our initial sample,

we will therefore calculate the standard error on the estimated 90-10 percentile difference of

log γ, and ensure that this standard error is smaller than 0.5 = (10− 8)/4. If the standard

error turns out to be above 0.5, we will collect another sample of 2,500 subjects to increase

precision.2
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