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1 Introduction

Since the pioneering work of |[Mirrlees| (1971), optimal income taxation has become a well-
developed field of study within economics. Over the years, a large number of theoretical
elaborations of the basic framework have contributed to a deep understanding of the salient
trade-offs faced by a government in designing their income tax system while empirical studies
have provided a wealth of evidence on the likely causal impacts of tax policy reform. In light
of the scientific maturity of the field, it is desirable to develop methodology for synthesizing
the accumulated knowledge from decades of research on optimal income taxation and to take
stock of what this accumulated knowledge can teach us about policy-making. This paper
represents a first step towards this end. We focus on the literature which estimates elasticities
of taxable income by looking at bunching around “notches” and “kinks” in many real-world
tax schedules, which represents arguably the cleanest causal evidence of elasticities of taxable
income. We synthesize information in this literature by first developing a structural, Bayesian
meta-analysis framework and using this framework along with a hand-crafted dataset of
existing studies using tax kinks/notches to identify structural primitives of an optimal income
taxation model in the spirit of Mirrlees (1971)).

Our meta-analysis produces a mean estimate of the elasticity of taxable income implied
by the literature, and arguably more importantly, also produces uncertainty estimates sur-
rounding this mean estimate. However, to translate this positive information into a set of
policy implications, these elasticities must be integrated with information about normative
judgements about which objectives are desirable. We thus next survey the general US public
to elicit tastes for redistribution. Comparing the variation in redistributive tastes of with

the uncertainty estimates implied by our meta-analysis, we ask a central but unexplored



question: To what extent does policy disagreements stem from scientific uncertainty as op-
posed to from normative disagreement? We argue that the answer to this question may have
important implications for how economists communicate their findings with policymakers

and the general public.

1.1 Meta Analysis Details

We begin our study by generalizing the basic kink /notch framework pioneered by [Saez (2010))
to allow for non-constant elasticities of taxable income (ETT). Within this generalized frame-
work, we formalize what we view as a “folk wisdom” in the literature that even if elastic-
ities are not literally constant across the income distribution, the parametric specifications
adopted in the literature approximately estimate the local ETT around the kink/notch under
study.

Next, given a collection of pointwise elasticity estimates at various incomes, we provide a
framework that integrates information from these various estimates into a single, coherent,
structural model of income and how it reacts to tax incentives. We conceptualize the main
structural parameter of interest as being a (continuous) function mapping location within the
income distribution to ETIs around that income level. We can then think about uncertainty
over this structural primitive in terms of a probability distribution over continuous functions
representing the ETI function. Given a “prior” over the ETI function, we can then think of
the scientific process as forming “posterior” updates based on the observations of pointwise
ETTI estimates found in the literature. Within machine-learning, Gaussian Processes (GPs),
as implemented for instance by Matthews et al.| (2017)), are a flexible methodology for param-
eterizing probability distributions over the infinite dimensional space of continuous functions
and thus provides precisely the language to formalize this idea. We thus theoretically adapt
the GP framework for our purposes before turning to the data and using it to draw from a

posterior distribution over the ETT function given our meta-analytical data.

1.2 Survey Experiment

We combine our structural Bayesian meta-analysis framework with survey data to generate
novel insights about the scientific and normative drivers of disagreement in what optimal tax
policy should look like. In particular, we survey the general public and elicit i) preferences
over redistribution, i) beliefs about elasticities of taxable income, i) uncertainty about
those beliefs about elasticities of taxable income.

After exploring normative disagreements and the data on elasticities of taxable income, we

next explore the policy implications of these disagreements. Specifically, for different values of



redistributive tastes elicited in the population, and for different draws of elasticity of taxable
income from the posterior distribution of our meta-analysis, we compute an optimal income
tax schedule. We then ask whether, at various income levels, whether the optimal marginal
tax rate varies more fixing redistributive tastes, but sampling from the posterior distribution
of elasticites or varying redistributive tastes but fixing a single elasticity estimate.

The rest of this Pre-Analysis Plan elaborates on our empirical strategy and the structural

estimation.

2 Descriptive Analysis

The data from our experiment will contain columns depicting:
1. Respondent identifier
2. Respondent demographics
3. Income of recipients 1 and 2
4. Cost of transfers 1 and 2

Our descriptive analysis will seek to answer the following questions: i) by how much on
average do people trade off transfers to different recipients of different income groups, i)
how much heterogeneity in general is there in redistributive preferences, and iii) how does
this tradeoff vary by observable demographic information.

We can answer question 1 using a simple linear regression model. Specifically, our trans-
fers will vary in terms of the income of recipients as well as in the transfer amount to each
of the two hypothetical recipients, j € {1,2}. Denote by I;,; the income of the j™ recipient
in question ¢ faced by survey-taker i. Similarly, let T;;; denote the transfer amount. Finally,
let Y;, be an indicator such that Y, = 1 if survey-taker ¢ chooses to give the transfer to

household 1 on question ¢q. Then we will estimate a linear regression model of the form

Yig=a+ 5[10g(Tiql/Tiq2) - ’Y[qul - qu2“ + Eig-

The above model will be estimated by an OLS regression of Y;, on log(;,1/1ip2) and [T —
T;p2) and transforming the resulting coefficients accordingly.

The interpretation of the above coefficients is as follows: a and § are nuisance parameters.
The intercept « accounts for any bias towards always picking the first recipient (note that
by our randomization, the actual characteristics of households 1 and 2 are drawn from the

same distribution, so o = 0.5 indicates no bias). The slope § measures how sensitive choices



are to recipient characteristics. Finally, v is the parameter of interest and characterizes the
tradeoff between giving a larger transfer and giving a transfer to a preferred recipient. For
example, if the transfer given to household 1 increases by 1% (log(Ti41/Tip2) increases by
0.01, then the income difference between household 1 and 2 must also increase by 0.01/v in
order to leave survey respondent behavior unchanged. Higher values of + thus correspond
to survey takers who are more responsive to transferring money towards the poor. As will
be seen in the next section, it will in particular relate to the CARA parameter describing
redistributive preferences.

To answer questions i) and iii), we estimate a random coefficients model of the form
Yig = a+ Bllog(Tig1/Tiga) — vilog(Ligr/ Tig2)] + €, i = 6'Xi + 6.

Here, X; is a vector of demographic characteristics asked about in the survey. To answer
question i), we report the overall Var(+;) implied by model estimates, as well as the implied
“R?” of the regression of v; on X;. We will also report the 8 coefficients, which tells the
slope of the relationship between redistribution preferences and X;.

In addition to asking about redistribution preferences. We also ask individuals to try to
predict the behavior response to changes in a 50% decrease in tax burden. We will report
an OLS regression of these predictions on the same demographic observables X; and also

report mean values of this quantity.

3 Structural Analysis

We model survey-takers as making choices about their preferred redistribution according to
marginal social welfare weights parameterized by a CARA function in baseline consumption.
More specifically, let ¢ index an individual survey taker. The marginal social welfare weights

of individual 7 are assumed to be of the form
9i(C) = exp(—:C)

where C'is baseline consumption and ~; is the absolute risk aversion parameter of individual
7. A hypothetical question in our survey asks the following question: consider two households
who respectively have an income after taxes and transfers from the government of C; and C\.
Would you rather transfer 77 to household 1 or 75 to household 27 If the survey taker answers

this question according to her re-distributive preferences, she would transfer to household 1



over household 2 if and only if
T exp(—’y,-C’l) — T eXp(—finQ) >0

We allow for the possibility that there is some cognitive noise in survey responses so in

reality, the survey taker chooses redistribution to household 1 if and only if

Ty exp(—7iCh)eigr > exp(—7:C2)€ig2,
We assume that for each individual ¢, logeiq,logige i T1EV (0;). Here, o; is a scale
parameter on the T1EV distribution, which may vary across individuals.
Taking logs and dividing both sides of the inequality by o;, the above is equivalent to

individuals choosing to redistribute to family 1 if and only if

—;i(Cl —Cy) + Uli[log(Tl) —log 15| + ali[log gigt —logeip] >0
We divide by o; in deriving the above expression because the distributional assumption on
the €’s imply that the last term above follows a standard logistic distribution, hence our
model boils down to a fairly standard random coefficients logit model without an intercept.
The ratio between the random coefficient in front of (C} — C3) and the random coefficient in
front of [log(77) — log T3] represents individual-level redistributive preference.

Before describing estimation, we discuss the sampling distribution of the data conditional
on individual level parameters 7; and ;. As a reminder, our data comes from a survey
experiment where we ask respondents 10 questions where we randomly sample values of

(C1,Cs,T1,T3). Let the draws of question parameters be given by
X; = (O, Copy Ty Ty -, O, O3 T T,
The outcomes of the survey can be represented by a vector of dummy variables
Y= (Yir, ., Yio),

where Y;, represents whether or not survey respondent ¢ chose to distribute to household 1

on question ¢. The likelihood function conditional on X; and the individual-level parameter



values is given by

10 eXp< ’YZ(C ) IOg( Tzqz)>

L Yl X—ia i,0¢) — i
( ‘ e ) !;[1 1+ exp (*%‘(Ci]ifcgi)*log(Tfingz‘))

oF)

To estimate the distribution of v; as flexibly as possible, we approximate the nonparametric
joint distribution of (v;,0;) as being supported on a fine grid of values, and estimate this
model using a variant of the approach proposed in [Fox et al.|(2011) (FKRB).

The basic idea behind the FKRB estimator is to parameterize the joint distribution of
(vi, 0i) as being supported on some grid of the form v x . Given this support restriction,
the joint distribution can be represented by the probability mass placed on each support
point. Specifically, let @ be a |y| X |o|, where each entry 6,, represents the probability
Prlv; = v,,0; = o]. The laws of probability imply that 6,, > 0 and Za’b 0. = 1, but no
further constraints on the entries of @. For a given guess of 0, the likelihood function for a

given survey participant is thus given by
Y |X170 Zzeabﬁ Y ’Xu’)/mab)

The basic idea behind our estimation procedure is thus as follows. First, using a procedure
detailed below, we construct a data-driven set of gridpoints, v and o. Second, we estimate

0 by maximizing a penalized log-likelihood, subject to the constraints on 8 described above.

N 41 2
h — X t. > = 1.
0 = arg n(}%xiz:;bg L(Y:X;,0) + )\; (Zb: 9a7b) st fap > 0,Va,b, Y Oy =1

a,b

The intuition behind the penalty term is that the standard FKRB specification has difficulty
distinguishing random coefficients which are too similar to one another. Heiss et al.| (2022)
propose the above penalty term to help smooth over these difficulties by encouraging the
estimator to pick estimated distributions of ; that places similar mass on similarl v’s. This is
akin to the use of kernels to smooth out estimated densities when performing kernel density
estimation. In line with this intuition, we pick our penalty parameter to decay with sample

size according to A oc N~1/5.

3.1 Choice of Grids

To apply FKRB-style estimators, we must choose the grid of points which (;, ¢;) is supported

on. There is little formal guidance in the literature on how to do this, so we pick a data-



dependent procedure based on what seemed reasonable in a pilot version of our study, which
we describe in this subsection.

In the first step, we fit a standard logistic regression without an intercept. The outcome
variable is an indicator for whether or not redistribution to family 1 was chosen, and the
regressors are (C; — Cy) and [log(T}) — log Ts].

Let 4 be the ratio of the coefficients from this regression, and let & be the reciprocal of the
coefficient in front of [log(77)—log T5]. Let 4 be a grid of 40 points that is evenly spaced in log
units between 4/10 and 407. Let v = (0,4, 100)[Y] Similarly, let o = (5/3, (5/3+25)/2,25)
be a grid of error variances. Then we assume that the joint distribution of (;, ;) is supported
on 7 x o. This discrete distribution can be represented by a matrix @ where 6,, = Pr[y; =
a,o; = b, where 0,, > 0 for all a,b and Z%b O = 1.

4 Sample Size

We initially plan on rolling out the experiment to 2,500 survey participants. This should be
sufficient to estimate heterogeneity in the population. In our pilot experiment, we estimate
that the 10"* percentile of log 7 is -10, while the 90" percentile is -8. We aim to collect a large
enough sample size to detect this difference with high probability. With our initial sample,
we will therefore calculate the standard error on the estimated 90-10 percentile difference of
log vy, and ensure that this standard error is smaller than 0.5 = (10 — 8)/4. If the standard
error turns out to be above 0.5, we will collect another sample of 2,500 subjects to increase

precisionﬂ
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