An Internship Programme for Young Ethiopian Entrepreneurs: Pre-Analysis Plan

Girum Abebe, Marcel Fafchamps, Michael Koelle and Simon Quinn

Fieldwork location:	Addis Ababa
Fieldwork dates:	November 2015 to January 2018
Date of Pre-Analysis Plan:	March 11, 2018

1 Introduction

We are currently running a field experiment in Addis Ababa, in which we place treated respondents in a four-week 'management internship', to work alongside middle and senior managers of established Ethiopian firms. This Pre-Analysis Plan outlines our primary hypotheses and accompanying identification strategy. We intend to register it with the AEA Hypothesis Registry. At the time of writing, we are finalising 12-month follow-up interviews, and cleaning the data.

2 Data

In this section, we outline the majority of the variables that we plan to use in our analysis (collected both from interns and from firms). There are two additional kinds of outcome variables that we will use: namely, firms' and interns' ranking of the relative importance of different kinds of management practices, and firms' rankings of hypothetical interns. We will use a different identification strategy for

SOURCE

these additional variables; for clarity of presentation, we will describe these variables immediately before we outline that alternative identification strategy.

2.1 Data on interns

For simplicity, in this Pre-Analysis Plan, we use the term 'interns' to refer collectively both to the treatment and control groups. We plan to use the following variables about interns.

Note that, for any continuous outcomes (including, for example, profits, earnings, hours worked, *etc*), we will winsorise at the 95th percentile.

The following table summarises our intended outcome variables from our face-to-face surveys.

OUTCOME FAMILY 1.1: MAIN OUTCOMES ABOUT EMPLOYMENT		
self_employed	Dummy: Respondent is self-employed	Dummy: e1 = 1
self_employed_hours	Hours worked (last weekday) in self-employment	u2_a + u2_b/60
profit_earnings	Profit for the last month (zero if not self-employed)	e15_01
wage_employed	Dummy: Respondent is wage-employed	Dummy: w1 = 1
wage_employed_formal	Dummy: Respondent has a permanent wage job	Dummy: w14 = 1
wage_employed_manager	Dummy: Respondent has a wage job with managerial re-	Dummy: $w5_4 = 1$
	sponsibilities	
self_employed_hours	Hours worked (last weekday) in wage employment	u1_a + u1_b/60
wage_earnings	Wage earnings for the last month (zero if not wage em-	w11
	ployed)	

Table 1: Variables collected through face-to-face survey

DEFINITION

OUTCOME FAMILY 1.2: PERCEPTIONS OF MANAGEMENT ABILITY

VARIABLE

perception_idea	Dummy: Has a good idea	Dummy: p1
perception_skills	Dummy: Has necessary technical skills	Dummy: p2
perception_costs	Dummy: Could accurately estimate costs	Dummy: p3
perception_demand	Dummy: Could accurately estimate demand	Dummy: p4
	Dummy: Could sell to a new customer	Dummy: p5
perception_findemp	Dummy: Could identify good employees	Dummy: p6
perception_inspire	Dummy: Could inspire/encourage/motivate employees	Dummy: p7
perception_suppliers	Dummy: Could find suppliers to offer a good price	Dummy: p8
perception_seed	Dummy: Has seed money to start	Dummy: p9
perception_banklend	Dummy: Could persuade a bank to lend to finance a busi-	Dummy: p10
	ness	
perception_friendlend	Dummy: Could persuade friend/family to lend to finance	Dummy: p11
	a business	
perception_networks	Dummy: Has necessary business networks	Dummy: p12
perception_complicated	Dummy: Too complicated to handle business tasks	Dummy: p13
perception_luck	Dummy: Business success is mostly determined by luck,	Dummy: p14
	not skill	

(*Note:* Variables here are dummies for respondents having answered 'agree' or 'strongly agree'.)

OUTCOME FAMILY 1.3: MANAGEMENT PRACTICES

(Note: These outcomes will be missing for any respondents not running a business.)

practices_all	Score for management practices (weighted using covari-	Weighted sum of all
	ance matrix from the control group, as in Anderson	variables listed in the
_	(2008))	following three rows
practices_marketing	Score for marketing practices (weighted using covariance	Weighted sum of
	matrix from the control group)	e27_1, e27_2, e27_3,
		e27_4, e27_5, e28,
		e29, e30

practices_records	Score for costing and record-keeping practices (weighted	Weighted sum of
	using covariance matrix from the control group)	e34, e35, e36, e37,
		e38, e39
practices_financial	Score for financial planning practices (weighted using co-	Weighted sum of
	variance matrix from the control group)	e40, e42, e43, e44

OUTCOME FAMILY 1.4: PREPARATION FOR SELF-I	EMPLOYMENT

business_plan_start	Dummy: Respondent has plans to start a business	Dummy: $n2 = 1$ or $n2$
		= 4
business_plan_expand	Dummy: Respondent has plans to expand a business	Dummy: $n2 = 2$ or $n2$
		= 3 or n2 = 4
business_plan_steps	Score for preparatory steps taken (weighted using covari-	Weighted sum of
	ance matrix from the control group)	n11_1 to n11_17
business_knowledge	Score for business knowledge (weighted using covari-	Weighted sum of k1-
	ance matrix from the control group)	k9
reservation_profit	Minimum monthly profit to open a business	s4

OUTCOME FAMILY 1.5: SEARCH FOR WAGE EMPLOYMENT

wage_search_any	Dummy: Any steps taken to search for a wage job in the	Dummy: any of s1-
	past four weeks	s7 = 1
wage_search_manual	Dummy: Search for manual work (set to 0 if	Dummy: s2 = 1
	<pre>wage_search_any = 0)</pre>	
wage_search_clerical	Dummy: Search for clerical or administrative work (set	Dummy: s2 = 2
	to 0 if wage_search_any = 0)	
wage_search_prof	Dummy: Search for professional work (set to 0 if	Dummy: s2 = 3
	<pre>wage_search_any = 0)</pre>	
wage_search_management	Dummy: Search for management work (set to 0 if	Dummy: s2 = 4
	<pre>wage_search_any = 0)</pre>	
reservation_wage	Minimum monthly wage to accept a job	s3

networks_years	Total years of contacts' experience	Sum of	b3	
networks_count	Number of contacts listed (maximum of 5)	Count o	f b2	
networks_senior	Number of senior contacts	Sum	of	(b2
		$\in \{1, \ldots$.,4})	
networks_middle	Number of mid-level contacts	Sum	of	(b2
		$\in \{5, \ldots$.,12})	

OUTCOME FAMILY 1.6: BUSINESS NETWORKS

The following table summarises our intended outcome variables from our monthly phone surveys.

Table 2: Variables collected through phone survey

VARIABLE	DEFINITION	SOURCE

Whether respondent worked last week in a wage job (q1 > 0)phone_wage phone_self_employed Whether respondent worked last week in own business (q2 > 0)Hours worked last week in a wage job phone_wage_hours q1 phone_self_hours Hours worked last week in own business q2 phone_search_wage Whether respondent searched for a wage job Dummy: (q4 == 1) phone_search_self Whether respondent planned/researched starting own Dummy: (q4 == 2)business

OUTCOME FAMILY 2.1: EMPLOYMENT

OUTCOME FAMILY 2.2: BELIEFS ABOUT EMPLOYMENT

phone_satisfied	Whether respondent is satisfied with current employment	q5
	situation	
phone_wage_belief	Whether respondent believes that, 12 months from now,	Dummy: $(p8 = 4)$ or $(p8 = 5)$
	(s)he will have a wage job	
phone_self_belief	Whether respondent believes that, 12 months from now,	Dummy: $(p9 = 4)$ or $(p9 = 5)$
	(s)he will be self-employed	

OUTCOME FAMILY 2.3: PERCEPTIONS OF MANAGEMENT ABILITY		
phone_supervise	Respondent knows how to supervise production workers	p11_1
phone_customers	Respondent knows how to deal with customers	p11_2
phone_suppliers	Respondent knows how to deal with suppliers	p11_3
phone_advertise	Respondent knows how to market products or services	p11_4
phone_materials	Respondent knows how to source raw materials	p11_5
phone_accounts	Respondent knows how to deal with accounts	p11_6
phone_newwork	Respondent knows how to hire new workers	p11_7
phone_debtors	Respondent knows how to deal with people who do not	p11_8
	рау	
phone_banks	Respondent knows how to deal with banks and other fi-	p11_9
	nancial institutions	
phone_prioritise	Respondent knows how to prioritise his/her time	p11_10

OUTCOME FAMILY 2.3: PERCEPTIONS OF MANAGEMENT ABILITY

2.2 Data on firms

We have the following data on respondent firms.

Table 3: Firm outcomes

VARIABLE	DEFINITION	SOURCE (QUESTION NUMBER)

ad	Did any advertising for new hires	14_1
ad_board	Did advertising on the job boards	14_2_1
ad_newspapers	Did advertising in the gazette or other newspapers	14_2_2
ad_post	Did advertising outside premises	14_2_3
ad_online	Did advertising online	14_2_4

OUTCOME FAMILY 3.1: ADVERTISING FOR NEW EMPLOYEES

ad_agency	Did advertising by agency/broker	14_2_5
ad_university	Did advertising on university/college campuses	14_2_6
ad_fairs	Did advertising through job fairs	14_2_7

hires_total	Total hires (last two months)	Sum of the next four vari-
		ables
hires_professional	Professional hires (last two months)	13_2_p (= 0 if none)
hires_services	Client services hires (last two months)	13_2_c (= 0 if none)
hires_production	Production worker hires (last two months)	13_2_w (= 0 if none)
hires_support	Support services hires (last two months)	13_2_s (= 0 if none)
sep_total	Total separations (last 12 months)	Sum of the next four vari-
		ables
sep_professional	Professional separations (last 12 months)	11_2_p (= 0 if none)
sep_services	Client services separations (last 12 months)	11_2_c (= 0 if none)
sep_production	Production worker separations (last 12 months)	11_2_w (= 0 if none)
sep_support	Support services separations (last 12 months)	11_2_s (= 0 if none)

OUTCOME FAMILY 3.2: LABOUR FLOWS

OUTCOME FAMILY 3.3: MANAGEMENT PRACTICES

mgmt_total	Overall management practices z-score	z-score of average of
		mgmt_operations,
		mgmt_monitoring,
		mgmt_target and
		mgmt_incentives
mgmt_operations	Operations practices z-score	m25 z-score
mgmt_monitoring	Monitoring practices z-score	Average of
		mgmt_monitoring1
		to mgmt_monitoring7
mgmt_monitoring1	How many production performance indicators (PPI)	m26 z-score (recode $-9 = 1$)
mgmt_monitoring2	How frequently PPI collected	m27 z-score (recode $-9 = 1$)

mgmt_monitoring3	How frequently PPI shown to managers	(m28 + 1) z-score (recode 8
5 _ 5		= 1, recode 'other')
mgmt_monitoring4	How frequently PPI shown to workers	(m29 + 1) z-score (recode 8
		= 1, recode 'other')
mgmt_monitoring5	Where PPI displayed	m30 z-score (recode -9 = 1)
mgmt_monitoring6	How often PPI reviewed	recoded m31 z-score (re-
mgmc_monreoring0		```
		code 1 = 3, 3 = 1
mgmt_monitoring7	Are PPI compared	recoded m32 z-score (re-
		code $1 = 2, 2 = 1$)
mgmt_target	Target practices z-score	recoded m33 z-score (re-
		code $1 = 2, 2 = 3, 3 = 4, 4$
		= 1, -9 = 1)
mgmt_incentives	Incentive practices z-score	Average of
		mgmt_incentives1
		to mgmt_incentives3
mgmt_incentives1	Rewarding target achievements	m34 z-score
mgmt_incentives2	Promoting employees	recoded m35 z-score (re-
		code $1 = 3, 3 = 1$)
mgmt_incentives3	Moving employees	m9 z-score
mgmt_records	Record-keeping practices z-score	Average of
		mgmt_records1 to
		mgmt_records5
mgmt_records1	Issue invoices	recoded m20 z-score (re-
		code $1 = 4, 2 = 3, 3 = 2, 4$
		= 1)
mgmt_records2	Pay on invoice	recoded m21 z-score (re-
mgmt_recordsz		
		code $1 = 4, 2 = 3, 3 = 2, 4$
		= 1)
mgmt_records3	Minute of meetings	recoded m22 z-score (re-
		code $1 = 2, 2 = 1, -9 = 1$)

mgmt_records4	Keeping of archives	recoded m23 z-score (re-
		code $1 = 2, 2 = 1, -9 = 1$)
mgmt_records5	Written reports	recoded m24 z-score (re-
		code $1 = 2, 2 = 1, -9 = 1$)
mgmt_marketing	Marketing practices z-score	Average of
		mgmt_marketing1
		and mgmt_marketing2
mgmt_marketing1	Advertising	recoded m19 z-score (re-
		code 1 = 2, 2 = 1)
mgmt_marketing2	Warranties	recoded m16 z-score (re-
		code $1 = 5, 2 = 4, 4 = 2, 5$
		= 1)

For management practices, we only will use the six area scores and the overall management practices scores as outcome variables in the analysis, but list the component variables for completeness and to document their coding. All the components of mgmt_total are based on Bloom, Schweiger, and Van Reenen (2012); we keep the questions and the coding identical to ensure comparability of management in Ethiopian fims to other countries. We elicit additional scores for record-keeping and marketing practices; we will not include these two categories in the overall management practices score.

We will calculate z-scores of variable x_i for observation i as follows:

$$z_i = \frac{x_i - \bar{x}}{\sigma_x}.$$
(1)

We will calculate the mean \bar{x} and the standard deviation σ_x from the baseline data; and apply these moments for the z-score calculation both at baseline and at endline.

2.3 Testing balance

We will begin our analysis by testing balance. We will test balance both for the interns and for the firms.

To test balance for the interns, we will take each of the variables described earlier in Table 1, and will run the following regression:

$$y_{ip0} = \beta_0 + \beta_1 \cdot T_i + \delta_p + \varepsilon_i, \tag{2}$$

where *i* indexes interns, *p* indexes the intern pairs used for randomisation, where y_{ip0} refers to the baseline value of the variable and T_i is a dummy for being treated. We will allow for robust standard errors.

That is, using Stata code, we will estimate:

```
ivreg2 y_pre treat pair*, partial(pair*) robust
```

To test balance for the firms, we will take each of the variables described earlier in Table 3, and will run the following regression:

$$y_{fg0} = \beta_0 + \beta_1 \cdot T_f + \delta_g + \varepsilon_f, \tag{3}$$

where f indexes firms, g indexes the 'gathered fields' used for randomisation, where y_{fg0} refers to the baseline value of the variable and T_f is a dummy for being treated. We will allow for robust standard errors.

That is, using Stata code, we will estimate:

ivreg2 y_pre treat group*, partial(group*) robust

As a formal test that our randomisation worked, we will then conduct an omnibus F-test for the joint hypothesis that all β_1 coefficients are equal to zero (that is, a single test across all variables for interns and all for firms).

3 Treatment effects on interns

3.1 Basic estimating specification

We will test the effects of the internship on a variety of outcomes for the individual (we will shortly outline our intended structure of outcome variables for doing this). We begin by outlining our preferred estimation specification for interns.

For some individual respondent *i*, denote T_i as a dummy for whether *i* was assigned to treatment. Treatment status was assigned using matched pairwise dummies; we index these dummies by *p*. We observe each individual at baseline (which we denote as t = 0), at a six-month follow-up (which we denote t = 1) and at a 12-month follow-up (t = 2). Our preferred estimating equation is ANCOVA with pairwise dummies; that is, for individual *i* in pair *p* at time t > 0, we intend to estimate:

$$y_{ipt} = \beta_1 \cdot T_i + \beta_2 \cdot y_{ip0} + \delta_p + \varepsilon_{ipt}.$$
(4)

Neither our sampling process nor our assignment mechanism was clustered; therefore, following the recent guidance of Abadie, Athey, Imbens, and Wooldridge (2017), we will use robust standard errors rather than by clustering at any higher level of aggregation. (When we pool across waves, we will — of course — allow for clustering at the level of the respondent.)

Using Stata code, denote y as some outcome variable of interest, y_pre as the baseline value, treat as a dummy for treatment, pair* as the set of pairwise dummy variables, and IndividualID as the identifier for the individual participants. Then we will estimate the following by OLS (pooling across t = 1 and t = 2):

```
ivreg2 y treat y_pre pair*, partial(pair*) cluster(IndividualID)
```

We will interpret $\hat{\beta}_1$ as the estimated 'Intent to Treat'.

In our primary specification, we will pool across follow-up waves; we also plan to report (either in the main paper or in an appendix) separate estimations for each follow-up wave.

For each hypothesis test, we will report two values:

- (i). The usual *p*-value from a Wald test; and
- (ii). We will report False Discovery Rate *q*-values, within the relevant family of outcomes (Benjamini, Krieger, and Yekutieli, 2006).

We anticipate that, prompted by our results on these outcomes, we will run further analysis on other outcomes, in order to further explore any mechanisms at work. We will acknowledge in the paper where analysis goes beyond the regressions pre-specified here.

3.2 Analysis by outcome families

We now outline a series of regression families. We structure these outcomes to represent primary outcomes of interest, followed by potential mechanisms (see Olken (2015)). Our experimental design has three primary hypotheses: namely, that the internship changes employment outcomes (both in the sense of wage employment and self-employment), that the internship changes attitudes about management practices, and that — among self-employed respondents — the internship changes management practices.¹ We will then test a set of secondary outcomes (*i.e.* in this context, mechanisms) — namely, we will test effects on steps taken to search for wage employment, effects on steps taken to search/prepare for self-employment, and effects on business networks.

3.2.1 Primary outcome: Occupation

To estimate the effect of treatment has any effect on occupation, we will estimate equation 4 using the outcomes in Outcome Family 1.1.

3.2.2 Primary outcome: Attitudes about management practices

To estimate the effect of treatment has any effect on attitudes about management practices, we will estimate equation 4 using the outcomes in Outcome Family 1.2. We intend to estimate with each of these outcomes in turn.

We view all of these outcomes as reflective of a latent variable — namely, the respondent's perceptions about his/her skills/ability to run a business. Therefore, in addition to estimating with each of these outcomes in turn, we will also estimate (i) using the sum across dummy variables, and (ii) using an index of outcomes (constructed following the recommendation in Anderson (2008)). Note that, for both of these additional estimations, we will reverse the dummy variable coding for the last two variables

¹ In our original funding proposal, for example, we emphasise the value of this experimental design for testing how exposure to established managers facilitates changes in views on management practices among aspiring entrepreneurs.

(perception_complicated and perception_luck), so that an increase in each variable indicates a perception of being more skilled/able.

3.2.3 Primary outcome: Management practices among self-employed respondents

To estimate the effect of treatment on management practices among the self-employed we will estimate for each of the outcomes in Table 1.3 (with outcomes set to missing for those respondents not running a business).

3.2.4 Mechanism: Effects on preparing for self-employment

To estimate whether the treatment encouraged respondents to prepare for self-employment, we will estimate using the outcome variables in Table 1.4.

3.2.5 Mechanism: Effects on search for wage work

To estimate whether the treatment encouraged respondents to search for wage employment, we will estimate using the outcome variables in Table 1.5.

3.2.6 Mechanism: Effects on networks

To estimate whether the treatment encouraged respondents to search for wage employment, we will estimate using the outcome variables in Table 1.6.

3.3 Treatment effects by month

We conducted monthly phone surveys with both treated and control interns. We can estimate the trajectory of treatment effects by pooling all phone observations and estimating quadratic trends over time of the treatment effect. To do this, we estimate the following, subject to quadratic constraints on the treatment effects (where m > 0 indexes the months after treatment, c indexes calendar months, and p again indexes the intern pairs used for randomisation):

 $y_{ipmc} = \beta_m \cdot T_i + \delta_p + \eta_m + \omega_c + \varepsilon_{ipmc},$

subject to:

$$\beta_m = \phi_0 + \phi_1 \cdot m + \phi_2 \cdot m^2.$$

That is, instead of estimating parameters β_m , we will estimate ϕ_0 , ϕ_1 , and ϕ_2 . (We also also anticipate estimating equation 5 separately for each month, in which case η_m drops from the regression.) We anticipate producing graphs of the form generated in Abebe, Caria, Fafchamps, Falco, Franklin, and Quinn (2016); that is, showing both point estimates on a monthly basis (estimated as just described), with the quadratic fit superimposed.

We anticipate running this estimation for each of the variables in Outcome Family 2.1, Outcome Family 2.2 and Outcome Family 2.3.

4 Treatment effects on firms

4.1 Effects on firm practices

We have four hypotheses for the possible effect on firms of hosting interns: namely, that treatment caused firms to perceive prospective interns differently, that treatment encouraged firms to increase advertising for future hires, that treatment changed firms' labour flows (whether by increasing hiring or separations, or both), and that treatment changed firms' labour management practices more generally.

We view the first of these hypotheses as being a primary/direct potential outcome. We view the remaining three hypotheses as secondary, and we structure our analysis accordingly.

4.1.1 Primary outcome: Perceptions of prospective interns

Both treated firms and control firms were asked to provide a hypothetical ranking of interns, after each batch of interns finished. On the firm side, our primary hypothesis is that treatment causes changes in perceptions about prospective interns. We propose to test for such an effect as follows. For firm f ranking hypothetical intern i, we will use the following latent-utility difference specification:

$$y_{fi}^* = \beta_0 \cdot X_i + \beta_1 \cdot X_i \cdot T_f + \varepsilon_{fi}, \tag{5}$$

where T_f is a dummy for firm f having been treated, and X_j is a characteristic of hypothetical intern i(which we specify shortly). We will use this specification to estimate a rank-ordered logit, using data from the hypothetical rankings of interns. The key parameter of interest here is β_1 ; the null hypothesis of no treatment effect is tested as $H_0: \beta_1 = 0$.

We plan to estimate for the following definitions of X_i :

- (i). X_i as a dummy for whether the hypothetical intern is female;
- (ii). X_i as a dummy for whether the hypothetical intern has age at or above the sample median;
- (iii). X_i as a dummy for whether the hypothetical intern has education at or above the sample median; and
- (iv). X_i as a dummy for whether intern *i* is currently running his or her own business.

We interpret this as a test of whether, across the sample as a whole, the internship changed firms' attitudes towards interns. For example, if hosting an intern made firms more favourable towards potential female interns, we would estimate $\beta_1 > 0$. We plan to treat this as a family of estimations, and report sharpened *q*-values across the family. We then plan to extend the specification as follows:

$$y_{fi}^* = \beta_0 \cdot X_i + \beta_1 \cdot X_i \cdot T_f + \beta_2 \cdot X_i \cdot T_f \cdot Z_f + \varepsilon_{fi}, \tag{6}$$

where Z_f is a dummy variable for whether firm f hosted an intern having the same characteristic that defines X_i . (For example, if X_i is a dummy variable for whether the hypothetical intern is female, then Z_f will be a dummy for whether firm f hosted a female intern. We plan to estimate using the same set of specifications for X_i .) Our parameter of interest is β_2 . We interpret this as a test of whether the internship changed firms' attitudes towards interns who are similar to the intern hosted. For example, if hosting a *female* intern made firms more favourable towards potential female interns, we would estimate $\beta_2 > 0$. We plan to treat this as a family of estimations, and report sharpened q-values across the family.

4.1.2 Secondary outcome: Advertising for new employees

For some respondent firm f, denote T_f as a dummy for whether f was assigned to treatment. Treatment status was assigned using 'gathered fields' of firms; we index these gathered fields ('groups') of firms by g. We observe each firm at baseline (which we denote as t = 0), and immediately after the time of the internship (which we denote t = 1).

For secondary outcomes, our preferred estimating equation is ANCOVA with group dummies; that is, for firm f in group g at time t = 1, we intend to estimate:

$$y_{fg1} = \beta_0 + \beta_1 \cdot T_f + \beta_2 \cdot y_{fg0} + \delta_g + \varepsilon_{fg},\tag{7}$$

That is, using Stata code, we will estimate:

ivreg2 y treat y_pre group*, partial(group*) robust

For each hypothesis test, we will report two values:

- (i). The usual *p*-value from a Wald test; and
- (ii). We will report False Discovery Rate *q*-values, within the relevant family of outcomes (Benjamini, Krieger, and Yekutieli, 2006).

We anticipate that, prompted by our results on these outcomes, we will run further analysis on other outcomes, in order to further explore any mechanisms at work. We will acknowledge in the paper where analysis goes beyond the regressions pre-specified here.

To test for effects on advertising for new employees, we will estimate using the outcome variables in Outcome Family 3.1. In addition to each of these separate measures, we will add two additional outcome variables: the sum of different types of advertising, and the weighted sum of different types of advertising (with weights calculated as recommended in Anderson (2008)). We view these final two outcomes as providing summary measures of the extent of advertising activities (in the sense of measuring an increase in scope, through a variety of different advertising methods).

4.1.3 Secondary outcome: Labour flows

To test for effects on labour flows, we will estimate using the outcome variables in Outcome Family 3.2.

4.1.4 Secondary outcome: Management practices

Finally, to test for effects on host firm management practices, we will estimate using the outcome variables in Outcome Family 3.3.

5 Testing diffusion from host firms to hosted interns

5.1 Testing diffusion of ideas

This relies on our rankings of the relative importance of different management practices. We have this from five separate sources:

- (i). The treated and control interns at baseline;
- (ii). The treated firms (at the initial ranking interview);
- (iii). The treated and control firms (at the immediate follow-up);
- (iv). The treated interns (at immediate follow-up);
- (v). The treated and control interns at six months;
- (vi). The treated and control interns at 12 months.

We need to construct a distance measure between the ranking given by intern *i* and the ranking given by firm *j*. For this, we will use "Kendall's τ ". That is, we use the ranking to construct a matrix of pairwise comparisons — showing, for each pair, which of the two is preferred. Then, between two matrices, we have τ as 'proportion of pairwise comparisons where intern and firm agreed, minus proportion of pairwise comparisons where intern and firm agreed, minus proportion of pairwise comparisons where intern and firm disagreed'. Note that $\tau = 1$ for complete concordance, $\tau = -1$ for perfect discordance, and $\tau = 0$ (in expectation) for one or both rankings being random.

We continue to index interns by i and firms by f. This estimation will use both treated and control interns, and treated firms. (We do not use control firms, because we did not obtain rankings from them prior to the internship.) We will construct a large dyadic dataset within each session — in each case forming τ_{if} . Then we will run the following ANCOVA regression, clustering by session:

$$\tau_{ift} = \beta_1 \cdot A_{if} + \beta_2 \cdot T_i + \beta_3 \cdot \tau_{if0} + \delta_{ip} + \varepsilon_{ift}, \tag{8}$$

where A_{ij} is a dummy for intern *i* being assigned to firm *f*, T_i is a dummy for *i* being treated, and δ_{ip} are pairwise dummies to record the way that we randomised interns. We use *t* to denote the time of follow-up (discussed shortly), and we denote τ_{if0} as the baseline measure of concordance.

Therefore, we can test the following:

- (i). $H_0: \beta_1 = 0$ is a test for *specific* diffusion of management ideas from firm f to intern i;
- (ii). $H_0: \beta_2 = 0$ is a test for whether, in *general*, the treatment moved the treated group 'closer' to firm managers.

Note that, to construct τ_{ij} , we will use the firm ranking at the ranking interview, then the interns' rankings respectively at immediate follow-up (*i.e.* just for the treated), then six month follow-up and 12 month follow-up. That is, we will report three different estimations: one for immediate follow-up (using just the treated interns, so T_i will be dropped from the estimation), one for the six month follow-up, and one for the 12 month follow-up.

5.2 Testing diffusion of management practices

For those interns running a business, we will test directly for diffusion of implemented management practices. We will do this in two ways: by testing for diffusion in the level/quality of management practices, and by testing for diffusion in the relative importance (that is, the ranking) of management practices.

5.2.1 Testing diffusion on individual measures of management practice

Our estimating specification is as follows:

$$y_{ift} = \beta_1 \cdot M_{f0} + \beta_2 \cdot T_i + \beta_3 \cdot y_{if0} + \beta_4 \cdot s_{i0} + \varepsilon_{ift}, \tag{9}$$

where *i* indexes interns, *f* now indexes the host firm for intern *i* and *t* refers to the survey round (t = 0 for baseline, t = 1 for the six-month follow-up, and t = 2 for the 12-month follow-up). M_{f0} refers to a measure of host firm management practices at baseline, and is set to zero for interns in the control group. y_{if0} refers to the baseline value of the explanatory variable; if the intern was not running a firm at baseline, this is set to zero. s_{i0} is a dummy for whether the intern was running a firm at baseline. T_i refers to whether intern *i* was treated. Note that this estimation will only be run for those interns who are running a firm; we will therefore cluster by treatment assignment pair, rather than including pairwise dummies.²

We will apply this specification in two ways. First, we will define y_{ift} as practices_all (*i.e.* the overall management score for intern *i*). We will define M_{f0} as mgmt_total (*i.e.* the overall management score for host firm *f*). This is a general test of whether management quality (in the aggregate) diffuses from firms to interns. Second, we will run three separate regressions, respectively defining y_{ift} as practices_marketing, practices_records and practices_financial. For each regression, we will expand M_{f0} to be a vector, comprising mgmt_operations, mgmt_monitoring, mgmt_target and mgmt_incentives. This is a more specific test for whether particular aspects of management quality are differentially affected by the different components of host firm management quality. For this estimation, we will report individual tests on each of the regressors, and will also report an omnibus test for the null hypothesis that the coefficients on mgmt_operations, mgmt_monitoring, mgmt_target and mgmt_incentives are all zero.

5.2.2 Testing diffusion on rankings of management practice

By direct analogy to section 5.1, we will test for diffusion in the relative importance of management practices. (For example, one might imagine that the internship experience does not affect the overall quality of an intern's management, but may affect the relative importance that the intern attaches to different aspects of management.)

² If we were to include pairwise dummies, we would be estimating only for the narrow subset of observations where both members of a dummy are running a business at follow-up.

To do this, we will form five common categories between large and small firms, according to the following table.

FIRM MANAGEMENT PRACTICE AREA	INTERN MANAGEMENT PRACTICES RANKING CODES
Marketing	01, 02, 03, 04
Record-keeping	05, 06
Targets	07
Incentives	08, 09
Uncategorised	10

Both for host firms and for interns, we will rank the relative importance of these five categories. We will do this using an ordering of z-scores across the areas; for each firm and for each intern enterprise, we will therefore have a ranking of the relative quality of management in different categories. Our analysis will then proceed in the same way as in section 5.1; namely, we will construct τ_{ift} as before, and estimate again using equation 8. For the reasons discussed in the previous subsection, we will no longer use pairwise dummies; instead, we will cluster by stratification pairs. As in equation 8, we will include τ_{if0} . If intern *i* was not running a firm at baseline, we will set $\tau_{if0} = 0$; we will also include a dummy variable to measure whether intern *i* was running a firm at baseline.

6 Heterogeneity

We plan to study treatment effects for a number of relevant sub-groups. Sub-groups are identified by categorical variables capturing characteristics at baseline. When characteristics are continuous, we create subgroups by separating individuals (i) below the median of the characteristic and (ii) at or above the median level of the characteristic.

For each intervention, we will run the following specification:

$$y_{ipt} = \beta_1 \cdot T_i + \beta_2 \cdot I(x_{i0} = \nu) + \beta_3 \cdot I(x_{i0} = \nu) \cdot T_i + \alpha \cdot y_{ip0} + \delta_p + \varepsilon_{ipt}, \tag{10}$$

where $I(x_{i0} = \nu)$ is a dummy whether the categorical variable x_{i0} measured using data at baseline belongs in category ν . All other variables are defined as before.

We plan to study heterogeneity in impacts for the subgroups defined in Table 4.

For each hypothesis test, we will report two values:

- (i). The usual *p*-value from a Wald test; and
- (ii). We will report False Discovery Rate *q*-values, taken across the relevant family of mediators (Benjamini, Krieger, and Yekutieli, 2006).

We anticipate that, prompted by our results on these outcomes, we will run further analysis on other outcomes, in order to further explore any mechanisms at work. We will acknowledge in the paper where analysis goes beyond the regressions pre-specified here.

Table 4: Subgroups for heterogeneous treatment effects

VARIABLE

DEFINITION

SOURCE (QUESTION NUMBER)

degree	Respondent has a degree	dummy (f18 = 20 to 22)
cognitiveskills	Skills tests: mathematical ability (T1), English language	Average of z-scores from
	(T2), digit span (T3)	t_1, t_2, and t_3

MEDIATOR FAMILY 4.1: HUMAN CAPITAL

MEDIATOR FAMILY 4.2: FINANCIAL CAPITAL

assets	Above median baseline assets	Assets are sum of all rows of
		a5_ and a8 and a9

pred_loan	Predicted access to loan	Predicted endline value of
		(a12 + a17 + a23 + a30 +
		a35)

base_perm_wagejob	Dummy: respondent had a permanent wage job at base-	Dummy: w14 = 1
	line	
pred_perm_wagejob	Dummy: respondent predicted to have a permanent wage	Predicted endline w14 = 1
	job at endline	
wage_search_any	As defined previously	

MEDIATOR FAMILY 4.3: PROSPECTS IN WAGE-EMPLOYMENT

MEDIATOR FAMILY 4.4: GENDER

female	Dummy: respondent is female	Dummy: f7 = 2
--------	-----------------------------	---------------

When our mediator is a predicted variable, we obtain predictions as follows: we train a machine learning algorithm using features from the baseline survey. We regard all features (variables) from the baseline survey as potentially relevant. (For computational reasons, we might drop some variables before we start training the algorithm; especially if a variable contains many missing values.) We will use empirical tuning to define the optimal degree of complexity of the algorithms, which governs the set of variables included in the final prediction.

When the variable to be predicted is measured at endline, we use only the control group as our training sample.

7 Dealing with potential problems

7.1 Attrition

Our attrition is very low, and we do not anticipate this to be an empirical problem in this setting. Our field team placed a lot of emphasis on tracking respondents; including following respondents to other parts of Ethiopia and conducting some interviews on the phone. Our tracking sheets indicate that we successfully surveyed 96% of our initial sample at the 6-month follow-up, and 95% at the 12-month follow up survey.

7.2 Intent-to-treat: firms and interns

We have imperfect compliance of both firms and interns. Our experimental sample only consists of firms who had, in principle, agreed to host interns, and interns who turned up to an indication session we invited them to based on an initial expression of interest. Nevertheless, some firms subsequently refused to act as a host firm based on operational or capacity reasons. Similarly, some interns randomised to treatment did not complete their internship and dropped out at various stages after the randomisation. Some of these dropouts occurred because we had to ask interns to defer their placement due to capacity constraints; and anecdotally, such interns did not always come back to take up their placements. In such cases, we randomly chose which interns we asked to defer. This does not pose a conceptual challenge for our identification strategy; we are using an Intent-to-Treat interpretation, so we use the assignment to treatment as the relevant explanatory variable.

7.3 Re-assignment of interns

In a small number of cases, host firms refused to offer placements to interns after they were assigned to their specific firm. In such a case, we would re-invite the affected treated intern to complete another ranking exercise and be placed in a new firm. In other words, we treated them as if they had simply deferred their placement, without any further differences in the assignment mechanism. For the purpose of our diffusion analysis, we will assign as the matched firm the firm that actually hosted the intern (i.e.

the firm they were re-assigned to).

References

- ABADIE, A., S. ATHEY, G. W. IMBENS, AND J. WOOLDRIDGE (2017): "When Should You Adjust Standard Errors for Clustering?," Discussion paper.
- ABEBE, G., S. CARIA, M. FAFCHAMPS, P. FALCO, S. FRANKLIN, AND S. QUINN (2016): "Curse of Anonymity or Tyranny of Distance? The Impacts of Job-Search Support in Urban Ethiopia," *NBER Working Paper No.* 22409.
- ANDERSON, M. L. (2008): "Multiple inference and gender differences in the effects of early intervention: A reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects," *Journal of the American statistical Association*, 103(484).
- BENJAMINI, Y., A. M. KRIEGER, AND D. YEKUTIELI (2006): "Adaptive Linear Step-up Procedures that Control the False Discovery Rate," *Biometrika*, 93(3), 491–507.
- BLOOM, N., H. SCHWEIGER, AND J. VAN REENEN (2012): "The Land that Lean Manufacturing Forgot?," *Economics of Transition*, 20(4), 593–635.
- OLKEN, B. A. (2015): "Promises and Perils of Pre-Analysis Plans," *The Journal of Economic Perspectives*, 29(3), 61–80.