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Introduction 
 
Our study uses a randomized controlled trial (RCT) to evaluate the effectiveness of a mass media 
campaign (radio) designed to reduce pregnancy rates among Hispanic teenagers. It is the first 
study to rigorously investigate the effectiveness of a mass media campaign to reduce rates of 
teen pregnancies using an RCT approach, and its results will therefore inform policy-makers for 
the first time on a commonly used (and relatively inexpensive) policy instrument. The results 
from this study will aid in the design, calibration, and implementation of mass media campaigns 
to reduce teen pregnancy rates. 
 
 
Hypotheses 
 
The central hypothesis is that a radio message from a Hispanic teen that stresses the opportunity 
costs to the mother of having a baby (e.g., missed opportunities for fun, socializing with friends, 
or attending school) will diminish births to Hispanic teens.  One subsidiary hypothesis is that this 
effect will be stronger among younger teens (those under 17) than older teens (those 17 to 20).  
 
 
Sample 
 
Our sample consists of 28 non-overlapping FM radio station coverage areas in California. We 
selected California as the site of our study for three reasons.  First, California’s 2011 teen 
pregnancy rate was similar to the national average: 28.7 and 31.3, respectively (Martin et al. 
2013, pp. 8, 40).1 Second, California has a large, geographically dispersed Hispanic population 
that is served by a large number of Spanish-language radio stations, whose ads tend to be less 
expensive than English-language radio.  By mapping the coverage areas of Spanish-language 
stations that attract a substantial share of young listeners, we are able to identify a large number 
of non-overlapping regions served by a single station.  These distinct regions serve as our unit of 
random assignment.  Third, California makes available unusually detailed data on teen births, 
allowing us to measure birth counts for small geographic areas.  
 
We searched FCC filings and Radio-Locator.com to identify 60 Spanish-language stations in 
California, which were supplemented with 10 low-power English-language stations serving areas 
not covered by Spanish-language stations. We attempted to contact all 70 stations to inquire 
                                                
1 Martin, J. A., Hamilton, B. E., Ventura, S. J., Osterman, M. J., & Mathews, T. J. (2013). Births: Final data for 
2011. National vital statistics reports, 62(1), 1991-2011. 
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about pricing and scheduling the ad. Among the 60 stations which were successfully contacted, 9 
stations were too expensive, were temporarily off-air, or required lengthy approval processes to 
air PSAs. 
 
We collected data on characteristics of the remaining 51 stations, including latitude, longitude, 
and primary coverage area radius (the radius, in meters, of the area where the station’s signal 
strength is at least 60 dBu2) from FCC filings. After geocoding birth data from the California 
Department of Public Health and merging the birth and radio station datasets, we determined that 
in 2013, there were 14,596 births to female Hispanic teens in these 51 stations’ primary coverage 
areas. Next, we excluded 15 stations whose coverage areas fully or mostly overlap with those of 
others in the set of 51 stations. The remaining 36 stations’ coverage areas accounted for 98% 
(14,289 / 14,596) of the Hispanic teen births in the 51 areas in 2013. We also excluded the 8 
stations whose coverage areas had fewer than 30 Hispanic teen births in 2013, arriving at the 
final set of 28 stations to be randomly assigned to a treatment group and a control group. In what 
follows, the phrase “coverage area” refers to a station’s primary coverage area, excluding any 
portions that overlap with any of the other 27 stations’ primary coverage areas. 
 
 
Random Assignment of Treatment 
 
We have an experimental population consisting of 28 coverage areas. We blocked these areas 
into seven groups of four based on the total number of births to Hispanic female teens in 2013.3 
Two areas per block were randomly assigned to the treatment group (on June 18, 2015). The R 
code for the blocking and randomization is given in Appendix A. 
 
 
Intervention 
 
We contacted the 14 treatment group radio stations and asked each of them to air a 30-second ad 
15 times per week for five weeks. Thirteen of the 14 stations agreed to air the ad. Among these, 
12 stations used a Spanish-language version and one used an English-language version of the ad. 
In the ad, a young female speaker stressed the opportunity costs to teen mothers of having a baby 
(e.g., missed opportunities for fun, socializing with friends, or attending school). On most of 
these stations, the ad aired during a five-week period with one of three possible start dates 
(August 31, Sept. 14, or Sept. 28). However, one station began and ended early (airing the ad 
from August 4 to Sept. 6), and another station missed one spot and made up for it on Nov. 14. 
Thus, the earliest date that the ad was aired on any station was August 4, 2015, and the latest 
date was Nov. 14, 2015. 

                                                
2 We used the FCC’s F(50,50) model to predict, based on antenna height above average terrain and effective 
radiated power, the distance at which the signal strength equals 60dBu 50% of the time in 50% of locations. Within 
this contour, FM stations are protected from interference from other stations by the FCC and have sufficient strength 
to be picked up by most radios. 
3 The seven blocks consist of the coverage areas served by (in ascending order of the blocking criterion) (1) KEAL, 
KLMM, KLUN, and KMEN; (2) KIQQ, KULV, KMIX, and KXRS; (3) KQLB, KUNA, KLOB, and KMJV; (4) 
KGMX, KLOQ, KMYX, and KMAK; (5) KPST, KMXX, KXSE, and KGEN; (6) KSES, KJOY, KBBU, and 
KXLM; and (7) KSSE, KUCR, KWIZ, and KBZT. A random tiebreak was used to order the two coverage areas 
(KGEN and KSES) that were tied on the blocking criterion. 
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Data and Outcome Measures  
 
Our outcome measures will be derived from birth data to be made available to us by the 
California Department of Public Health.  At the time of preparing this pre-analysis plan, we only 
have birth data for 2009-2013. Thus, our plan is blind to outcome data. 
 
For each of the 28 coverage areas, our primary outcome is the number of births from Jan. 19, 
2016 (5.5 months after the first airing of the ad) to Sept. 14, 2016 (10 months after the last 
airing) to Hispanic females age 20 or younger, divided by the number of births from Jan. 18, 
2015 to Sept. 14, 2015 to Hispanic females age 20 or younger.4 (We chose Jan. 18 instead of Jan. 
19 as the start date for the denominator period so that the numerator and denominator periods 
have the same length, 240 days. The numerator period includes a leap day.) 
 
As shown in Table 1, we will create secondary outcome measures by varying (1) the age range of 
the mothers and (2) the dates of the numerator period and the corresponding denominator period. 
Specifically, we will analyze effects on births to Hispanic females age 16 or younger and age 17-
20, and we will also analyze effects on the number of births from Sept. 15, 2016 (just over 10 
months after the last airing of the ad) to March 1, 2017 (15.5 months after the last airing), 
divided by the number of births from Sept. 15, 2014 to March 1, 2015.5 (We expect births during 
9/15/2016 - 3/1/2017 to be less strongly affected than births during the primary numerator period 
of 1/19/2016 - 9/14/2016.) The first column in the table gives labels that we use to refer to these 
outcome measures later in this document. 
 
For the final secondary outcome (labeled E in Table 1), the numerator is the number of births 
from Oct. 27, 2015 (12 weeks after the first airing of the ad) to April 12, 2016 (36 weeks after 
the first airing of the ad) to Hispanic females age 20 or younger, and the denominator is the 
corresponding number of births from Oct. 26, 2014 to April 12, 2015. (Again, the start date is 
chosen to make the denominator period equal in length to the numerator period, which includes a 
leap day.) The vast majority of teens giving birth during the numerator period were already 
pregnant before the first ad aired. If the intervention were to cause a reduction in outcome E, 
possible explanations would include effects on abortions, miscarriages, or giving birth outside 
the coverage area where a teen heard the ad. Based on the content of the intervention and 
previous studies of media messages about teen pregnancy,6 we do not expect an effect on 
outcome E. 
 
As a tertiary outcome (labeled N in Table 1), we will analyze effects on births to non-Hispanic 

                                                
4 Since our outcome measures are all of the ratio form A / B, they could be converted to the proportional change (A 
− B) / B = A / B − 1 with no effect on estimated treatment effects and p-values, or to the percentage change 100% × 
(A − B) / B, which simply rescales the estimated treatment effects. We may report the results in one of these 
alternative formats if that seems helpful for readers.  
5 This denominator period is chosen to be two years earlier than the numerator period instead of just one year earlier, 
to ensure that the denominator is not affected by the treatment. 
6 Melissa S. Kearney and Phillip B. Levine, “Media Influences on Social Outcomes: The Impact of MTV’s 16 and 
Pregnant on Teen Childbearing,” American Economic Review, vol. 105, no. 12 (December 2015), pp. 3597-3632. 
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females age 20 or younger (using the same numerator and denominator periods as the primary 
outcome). We do not expect a large effect on outcome N. 
 
 

Table 1 

Label Primary or 
secondary 
outcome 

Numerator 
period 

Denominator period Age of 
mother 

Hispanic or 
non-Hispanic 

M Primary 1/19/2016 - 
9/14/2016 

1/18/2015 - 
9/14/2015 

≤ 20 Hispanic 

M16 Secondary 1/19/2016 - 
9/14/2016 

1/18/2015 - 
9/14/2015 

≤ 16 Hispanic 

M20 Secondary 1/19/2016 - 
9/14/2016 

1/18/2015 - 
9/14/2015 

17-20 Hispanic 

L Secondary 9/15/2016 - 
3/1/2017 

9/15/2014 - 
3/1/2015 

≤ 20 Hispanic 

L16 Secondary 9/15/2016 - 
3/1/2017 

9/15/2014 - 
3/1/2015 

≤ 16 Hispanic 

L20 Secondary 9/15/2016 - 
3/1/2017 

9/15/2014 - 
3/1/2015 

17-20 Hispanic 

E Secondary 10/27/2015 - 
4/12/2016 

10/26/2014 - 
4/12/2015 

≤ 20 Hispanic 

N Tertiary 1/19/2016 - 
9/14/2016 

1/18/2015 - 
9/14/2015 

≤ 20 non-Hispanic 

 
 
Method for Estimating Average Treatment Effects 
 
For each outcome measure, we will estimate the average effect of assignment to treatment, also 
known as the average intention-to-treat (ITT) effect, by running an ordinary least squares (OLS) 
regression of the outcome on an intercept, a treatment group dummy variable, and six dummy 
variables for the blocks used in randomization (omitting one of the seven blocks to avoid 
collinearity). The regression will include 28 observations, one for each coverage area. The 
treatment group dummy will be coded 1 for each of the 14 areas assigned to treatment, including 
the one where the radio station declined to air the ads, and 0 for the 14 areas assigned to control. 
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Thus, the estimated coefficient on treatment will be our point estimate of the average ITT effect.7 
We will report the conventional OLS standard error estimate for this coefficient.8 
 
We will report 90% and 95% confidence intervals for the average ITT effect, using a margin of 
error equal to the estimated standard error multiplied by the appropriate critical value from the t-
distribution with 20 degrees of freedom. 
 
Here is an example of R code that would correctly implement the statistical procedures. 
 
#	Code	assumes	these	vectors	of	length	28	have	been	created: 
#		y:	Outcome	measure 
#		treat.dummy:	Treatment	group	dummy	variable 
#		block.factor:	Factor	with	7	levels,	indicating	the	blocks	used	in	randomization 
#		(The	stations	in	each	block	are	listed	in	a	footnote	 
#			earlier	in	this	pre-analysis	plan.) 
 
ols.lm		=		lm(y	~	treat.dummy	+	block.factor) 
coef(ols.lm)['treat.dummy']		#	Point	estimate	of	average	ITT	effect 
summary(ols.lm)$coefficients['treat.dummy',	'Std.	Error']		#	Standard	error	estimate 
confint(ols.lm,	'treat.dummy',	level	=	0.9)			#	90%	confidence	interval 
confint(ols.lm,	'treat.dummy',	level	=	0.95)		#	95%	confidence	interval 
 
Estimated treatment effects for different groups of teens (e.g., when classified by age or by 
Hispanic vs. non-Hispanic origin) are likely to exhibit random variation even in the absence of 
actual variation in treatment effects. As one safeguard against overinterpreting the variation in 
estimates, we will report 95% confidence intervals for the differences between average ITT 
effects on the following pairs of outcomes in Table 1: (a) M16 vs. M20, (b) L16 vs. L20, and (c) 
M vs. N. To construct these confidence intervals, we will use the fact that the difference between 
average ITT effects on any two outcome measures A and B equals the average ITT effect on A − 
B. Thus, we will use the same regression and confidence interval construction methods as for 
individual outcomes, except that the dependent variables in these regressions will be the 
differences M16 – M20, L16 – L20, and M – N. 
 
Even if one or more of the confidence intervals for differences (a)-(c) excludes zero, the results 
should be interpreted with caution because of the multiple comparisons problem. Only the 
analysis of the primary outcome (M) should be considered confirmatory. All other analyses are 
exploratory. 
 
 
  

                                                
7 This point estimate is equivalent to the unadjusted difference in mean outcomes between the treatment group and 
control group, since the block dummies are the only covariates in the regression and the proportion assigned to 
treatment is constant across blocks. The purpose of including the block dummies is to account for blocking when 
estimating the standard error. 
8 Given our regression specification and experimental design (with two treatment group observations and two 
control group observations in each block), the conventional standard error estimator is equivalent to both the HC1 
and the HC2 variants of the Eicker-Huber-White “robust” standard error estimator. 
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Method for Calculating P-values 
 
For each outcome measure, we will report a p-value for a one-tailed test of the null hypothesis 
that the average ITT effect is zero against the alternative hypothesis that it is negative. We have 
chosen a one-tailed test because the intervention was designed to reduce teen birth rates by 
reminding teens about the opportunity costs of having a baby, and it is implausible that the 
intervention would have the opposite effect and increase teen birth rates. The p-value will be 
derived from the t-statistic (the estimated average ITT effect divided by its conventional OLS 
standard error estimate) under the assumption that its null distribution is the t-distribution with 
20 degrees of freedom. The following line of R code would correctly compute the p-value if run 
immediately after the code in the previous section (“Method for Estimating Average Treatment 
Effects”): 
 
pt(summary(ols.lm)$coefficients['treat.dummy',	't	value'],	df	=	20) 
 
As a robustness check, for each outcome measure, we will perform a one-tailed exact 
permutation test of the null hypothesis that assignment to treatment has no effect on the outcome. 
This test will leave the outcome data unchanged and examine how the estimated average ITT 
effect varies over all 279,936 possible treatment assignments.9 The p-value is the fraction of 
possible assignments that produce an ITT estimate less than or equal to the one produced by the 
actual assignment. 
 
 
Check for Balance Between Treatment and Control Groups 
 
We will report a table showing means and standard deviations by experimental group for the 
following pretreatment variables: 
● the numbers of births during 1/1/2015 - 8/3/2015 to Hispanic females (a) age 20 or 

younger, (b) age 16 or younger, and (c) age 17-20; 
● the numbers of births during 2014 to Hispanic females (a) age 20 or younger, (b) age 16 

or younger, and (c) age 17-20; 
● the ratios of births during 1/1/2015 - 8/3/2015 to births during 1/1/2014 - 8/3/2014 for 

Hispanic females (a) age 20 or younger, (b) age 16 or younger, and (c) age 17-20; and 
● the latitude, longitude, and coverage area radius of the radio station.  

 
In addition, we will perform a statistical test to assess whether the observed imbalances in the 
pretreatment variables listed above are larger than one would expect from chance alone. The test 
involves an OLS regression of the treatment group indicator on the pretreatment variables and 
calculation of a heteroskedasticity-robust Wald statistic10 for the null hypothesis that all the 

                                                
9 With 7 blocks and 4 areas per block, the number of ways to assign 2 areas in each block to treatment is 67 = 
279,936. Although the grouping of areas into blocks involved a random tiebreak (two areas had the same number of 
births to Hispanic female teens in 2013), our permutation test will treat the tiebreak as predetermined, since it is an 
ancillary statistic. See, e.g., the discussion of conditional inference in Bradley Efron, “Controversies in the 
Foundations of Statistics,” American Mathematical Monthly, vol. 85, no. 4 (April 1978), pp. 231-246. 
10 Jeffrey M. Wooldridge, Econometric Analysis of Cross Section and Panel Data, 2nd ed. (MIT Press, 2010), p. 62, 
equation (4.13). 
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coefficients on the pretreatment variables are zero. We will use an exact permutation test to 
calculate the p-value associated with the Wald statistic. 
 
 
Default Procedures for Decisions Not Explicitly Specified 
 
For any decisions not explicitly specified in this pre-analysis plan, we plan to follow the 
"standard operating procedure" document of Donald P. Green's research group (version 1.04, 
Dec. 22, 2015), which is attached as an appendix. 
 
 
Funding and Institutional Approval 
 
This project is funded by J-PAL North America grant # PG006726 through the Institute for 
Social and Economic Research and Policy (ISERP) at Columbia University. It has been approved 
by the Columbia University Institutional Review Board (Project #IRB-AAAN3650) and the 
California Committee for the Protection of Human Subjects (Project Number: 14-02-1523), 
whose approval was required in order to obtain birth information from the California Department 
of Public Health.  
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Appendix A 

 
R code that was used for blocking and randomization 

 
 
rm(list	=	ls(all	=	TRUE)) 
library(fields) 
set.seed(1234567) 
 
path1	=		#	[Insert	path	where	birth	data	and	radio	station	data	are	stored] 
 
#	Argument:	vec,	a	named	logical	vector 
#	Returns	character	string	listing	the	names	of	all	elements	where	vec	is	TRUE 
				 
paste.names.of.true	=	function(vec)	{ 
	 paste(names(vec[vec]),	collapse	=	'	') 
} 
 
#	1	row	per	radio	station 
#	Key	columns: 
#	"Broadcaste":		Call	letters 
#	"Latitude" 
#	"Longitude" 
#	"DBU60":		Distance	in	meters	to	the	primary	contour 
#	"Include":		1	if	OK	to	include	station,	0	otherwise 
 
stations		=		read.csv(paste0(path1,	'Teen	Pregnancy	Radio	Contacts.csv'),					 
																						stringsAsFactors	=	FALSE) 
 
sum(stations$Include)		#	No.	of	stations	meeting	initial	criteria	for	inclusion 
 
#	Drop	some	stations	whose	coverage	areas	almost	entirely	overlap	with	others' 
 
stations$Include[stations$Broadcaste	%in%							
c('KRAY','KHDC','KSKD','KRQB','KTSE','KAEH','KLMG','KMLA','KLJR','KALT','KBTW','KBYN'
,'KCEL','KSRT','KXSB')]	=	0 
 
#	Drop	8	stations	with	fewer	than	30	births	to	Hispanic	teen	females	in	2013 
 
stations$Include[stations$Broadcaste	%in%	
c('KBAA','KRLT','KCVR','KMJE','KMVE','KXTS','KNTO','KJOR')]	=	0 
 
stations	=	stations[stations$Include	==	1,	] 
 
num.stations	=	nrow(stations)		#	No.	of	stations	remaining 
num.stations 
 
thresh.in.km	=	as.numeric(stations$DBU60)	/	1000 
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#	Return	value: 
#			Matrix	of	"in	propagation	area"	indicators	for	each	station-birth	pair 
#			Each	row	is	a	radio	station 
#			Each	column	is	a	birth 
#			Element	[i,	j]	is	1	if	birth	j	is	within	station	i's	propagation	area 
 
station.birth.matrix	=	function(csv.filename)	{ 
				 
		#	1	row	per	birth 
		#	X:	longitude 
		#	Y:	latitude 
		births		=		read.csv(paste0(path1,	csv.filename)) 
		births		=		births[births$X	!=	0	&	births$Y	!=	0,	c('X','Y')] 
 
		#	Matrix	of	distances	(in	km)	for	each	station-birth	pair 
		#	Each	row	is	a	radio	station 
		#	Each	column	is	a	birth 
		dists		=		rdist.earth(cbind(stations$Longitude,	stations$Latitude),	 
																								births,	miles	=	FALSE) 
		rownames(dists)		=		stations$Broadcaste 
 
		birth.in.zone		=		matrix(nrow	=	num.stations,	ncol	=	nrow(births),	 
																											dimnames	=	list(stations$Broadcaste,	NULL)) 
 
		for	(i	in	1:num.stations)	{ 
			 birth.in.zone[i,]		=		dists[i,]	<	thresh.in.km[i] 
		} 
 
		birth.in.zone				 
} 
 
 
station.sets	=	function(csv.filename)	{ 
 
		#	Vector	(length	=	no.	of	births) 
		stations.reaching	=	apply(station.birth.matrix(csv.filename),	2, 
																												paste.names.of.true) 
 
		#	Vector	(length	=	no.	of	"station	sets":	KRAY-only,	KSES	&	KRAY,	etc.) 
		num.births	=	table(stations.reaching) 
		num.births	=	num.births[names(num.births)	!=	''] 
 
		data.frame( 
	 station.set	=	names(num.births), 
	 num.births	=	num.births, 
	 stringsAsFactors	=	FALSE 
	 ) 
} 
 
 
sets2013	=	station.sets('Births2013GIS.csv') 
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#	E.g.,	if	station.set	==	'KSES	KRAY',	then	num.stations	==	2 
sets2013$num.stations	=	(nchar(sets2013$station.set)	+	1)	/	5 
 
stations.to.assign	=	sets2013[sets2013$num.stations	==	1,	] 
nrow(stations.to.assign) 
 
sort(stations.to.assign$num.births) 
 
 
#	Code	assumes: 
#	length(criterion)	is	divisible	by	block.size 
#	length(example.block.treatment)	equals	block.size 
 
block.randomized.treatment	=	 
function(criterion,	block.size	=	4,	example.block.treatment	=	c(0,0,1,1))	{ 
		num.stations		=		length(criterion) 
		num.blocks		=		num.stations	/	block.size 
	 
		ranking	=	rank(criterion,	ties.method	=	'random') 
		block		=		(ranking	-	1)	%/%	block.size	+	1 
 
		randomized.treatment	=	rep(NA,	num.stations) 
 
		for	(b	in	1:num.blocks)	{ 
	 randomized.treatment[block	==	b]	=	sample(example.block.treatment) 
		} 
 
		randomized.treatment 
} 
 
 
stations.to.assign$treated	=	 
		block.randomized.treatment(criterion	=	stations.to.assign$num.births) 
 
table(stations.to.assign$treated) 
 
stations.to.assign[,	c('station.set','treated')] 
 
#	List	of	stations	assigned	to	treatment 
 
stations.to.assign[stations.to.assign$treated	==	1,	'station.set'] 
 
q('no') 
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This standard operating procedures (SOP) document describes the default practices of the experimental
research group led by Donald P. Green at Columbia University. These defaults apply to analytic decisions
that have not been made explicit in pre-analysis plans (PAPs). They are not meant to override decisions that
are laid out in PAPs. For more discussion of the motivations for SOP, see Lin and Green (2015).
This is a living document. To suggest changes or additions, please feel free to e-mail us1 or submit an issue
on GitHub. Also, when referencing this document, please be sure to note the version and date.
Many thanks to Peter Aronow, Susanne Baltes, Jake Bowers, Al Fang, Macartan Humphreys, Berk Ozler,
Anselm Rink, Michael Schwam-Baird, Uri Simonsohn, Amber Spry, Dane Thorley, Anna Wilke, and Jose
Zubizarreta for helpful comments and discussions.

Preliminary checks on data preparation and study implementation

After collection of the raw data, all data processing steps leading up to creation of the files for analysis will
be performed by computer code. We will make these computer programs publicly available.
The following types of checks should be performed and documented before analyses are publicly disseminated
or submitted for publication:2

• Verifying that treatment occurred. Supportive evidence can include receipts for expenses associated
with treatment, spot checks by more than one observer in the field, geotagged photographs, and/or
manipulation checks (statistical evidence that random assignment created a treatment contrast in the
intended direction—see, e.g., Gerber and Green (2012), Box 10.3, p. 335).

• Verifying that outcome data were gathered (e.g., via receipts, spot checks, and/or having a second team
member independently gather data for a sample of cases).

• Verifying that there were at least two team members involved in all raw data collection e�orts (including,
but not limited to, the gathering of data from survey organizations and government agencies).

• Verifying that the computer programs for data processing correctly implement the intended logic and
that, when applied to the raw data, these programs reproduce the data used in the analysis.

• Examining the distributions and missingness rates of all variables used in the analysis and their
precursors in the raw data files. These variables should be checked both for plausibility and for
consistency across the stages of data processing. The checks should normally include not only univariate
summaries, but also cross-tabulations of related variables.

• Other checks described under “Covariate imbalance and the detection of administrative errors” and
“Verifying that randomization was implemented as planned”.

Any unresolved data preparation or processing issues will be disclosed in a research report or supplementary
materials.

Hypothesis testing

One-tailed or two-tailed test?

We will report two-tailed hypothesis tests unless the PAP specifies a one-tailed test or some other approach.3
1winston.lin@columbia.edu (Lin), dpg2110@columbia.edu (Green), and a.coppock@columbia.edu (Coppock).
2If any of these checks require access to confidential data, we will obtain Institutional Review Board approval for the team

members performing the checks.
3Olken (2015) (p. 70) discusses one other approach: “An interesting hybrid alternative would be to pre-specify asymmetric

tests: for example, to reject the null if the result was in the bottom 1 percent of the distribution or in the top 4 percent, or the

3
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Use of permutation methods

For significance tests and p-values, we will either (1) report Studentized permutation tests or (2) use
permutation methods to check the accuracy of asymptotic approximations.

For an example of (1), see below. The Studentized permutation t-test (Janssen (1997)) compares a
heteroskedasticity-robust t-statistic (instead of the estimated average treatment e�ect itself) with its em-
pirical distribution under random reassignments of treatment.4 Unless otherwise specified in the PAP, our
Studentized permutation t-tests will use the t-statistic based on the HC0 or HC1 robust standard error
estimator,5 and p-values for two-tailed tests will be computed according to the following convention: “In
general, if you want a two-sided P-value, compute both one-sided P-values, double the smaller one, and take
the minimum of this value and 1” (Rosenbaum (2010), p. 33).

For an example of (2), see Lin (2013, 309–13), where a simulation permuting the treatment indicator is used
to check the validity of confidence intervals based on robust standard errors.

For all permutation methods, we will use at least 10,000 randomizations and the random number seed
1234567.

Example: Studentized Permutation Test

suppressMessages({
library(randomizr)
library(sandwich)
library(lmtest)

})

## Warning: package �randomizr� was built under R version 3.1.3

set.seed(1234567)

N <- 200

# Create potential outcomes
Y0 <- rnorm(N)
Y1 <- Y0 + 0.25

# Conduct random assignment
Z <- complete_ra(N, m = 50)
Y_obs <- Y1*Z + Y0*(1-Z)

# Conduct Estimation
fit <- lm(Y_obs ~ Z)

# Obtain Heteroskedasticity-robust t-statistic

bottom 0.5 and the top 4.5 percent, and so on. These asymmetric tests would gain much of the statistical power from one-sided
tests, but still be set up statistically to reject the null in the presence of very large negative results.” See also Tukey (1993)
(p. 276).

4See also Romano (2009) and Chung and Romano (2013).
5Since HC1 is just HC0 multiplied by a constant, the choice between these two estimators has no e�ect on the permutation test.

MacKinnon (2013) (pp. 456-458) found in simulations that the power of Studentized bootstrap tests “decreases monotonically
from HC1 to HC2, HC3, and finally HC4. . . . The best HCCME [heteroskedasticity-consistent covariance matrix estimator] for
asymptotic inference may not be the best one for bootstrap inference.” We conjecture that, similarly, Studentized permutation
tests tend to have more power with HC0 or HC1 than with HC2, HC3, or HC4.
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t_obs <- coeftest(fit, vcov = vcovHC(fit, type = �HC0�))[�Z�,�t value�]

# Conduct simulation
sims <- 10000
t_sims <- rep(NA, sims)

for(i in 1:sims){
Z_sim <- complete_ra(N, m = 50)
fit_sim <- lm(Y_obs ~ Z_sim)
t_sims[i] <- coeftest(fit_sim, vcov = vcovHC(fit_sim, type = �HC0�))[�Z_sim�,�t value�]

}

# "In general, if you want a two-sided P-value, compute both one-sided P-values,
# double the smaller one, and take the minimum of this value and 1."
# Rosenbaum (2010), Design of Observational Studies, p. 33, note 2
# (Other options exist, but this is our default.)

p.left <- mean(t_sims <= t_obs)
p.right <- mean(t_sims >= t_obs)

p <- min(2 * min(p.left, p.right), 1)
p

## [1] 0.3172

hist(t_sims)
abline(v = t_obs, lwd=2, col="red")

Histogram of t_sims
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Using covariates in analysis

Default methods for estimating average treatment e�ects

Estimation methods for the primary analysis will normally have been specified in the PAP. For reference in
what follows, here we describe our default methods for a unit-randomized experiment with N subjects. Let
M < N denote the largest integer such that at least M subjects are assigned to each arm.

• If M Ø 20 , we use least squares regression of Y on T, X, and T * X, where Y is the outcome, T is the
treatment indicator, and X is a set of one or more mean-centered covariates (see “Choice of covariates”
below for guidelines on the choice and number of covariates). The coe�cient on T estimates the average
e�ect of assignment to treatment. See Lin (2012a) for an informal description of this estimator.

• If M < 20 Æ N , we use least squares regression of Y on T and X.

• If N < 20, we use either di�erence-in-di�erences or di�erence-in-means. (Section 4.1 in Gerber and
Green discusses the e�ciency comparison between these two estimators. Again, the choice will typically
be specified in the PAP.)

Example: Default Covariate Adjustment Procedure

suppressMessages({
library(randomizr)
library(sandwich)
library(lmtest)

})

N <- 200

# Make some covariates
X1 <- rnorm(N)
X2 <- rbinom(N, size = 1, prob = 0.5)

# Make some potential outcomes
Y0 <- .6*X1 + 3*X2 + rnorm(N)
Y1 <- Y0 + .4

# Conduct a random assignment and reveal outcomes
Z <- complete_ra(N, m= 100)
Y_obs <- Y1*Z + Y0*(1-Z)

# Mean-center the covariates
X1_c <- X1 - mean(X1)
X2_c <- X2 - mean(X2)

# Conduct Estimation
fit_adj <- lm(Y_obs ~ Z + Z*(X1_c + X2_c))

# Robust Standard Errors
coeftest(fit_adj, vcov = vcovHC(fit_adj, type = "HC2"))

##
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## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.548750 0.097417 15.8981 < 2.2e-16 ***
## Z 0.158787 0.141514 1.1221 0.26322
## X1_c 0.773147 0.118270 6.5371 5.41e-10 ***
## X2_c 2.813019 0.198191 14.1935 < 2.2e-16 ***
## Z:X1_c -0.286591 0.146341 -1.9584 0.05162 .
## Z:X2_c 0.210276 0.282875 0.7434 0.45817
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

# Compare to unadjusted model
fit_unadj <- lm(Y_obs ~ Z)
coeftest(fit_unadj, vcov = vcovHC(fit_unadj, type = "HC2"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.665825 0.177443 9.388 <2e-16 ***
## Z -0.069557 0.258543 -0.269 0.7882
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Choice of covariates for regression adjustment

Ordinarily our choice of covariates for adjustment will have been specified in the PAP. For voter turnout
experiments, the SOP section “Issues specific to voter turnout experiments” gives a default set of covariates
in case the PAP fails to specify the choice.

With M and N as defined above, we will include no more than M/20 covariates in regressions with treatment-
covariate interactions, and no more than N/20 covariates in regressions without such interactions.6

If PAP has failed to specify the choice of covariates, if the experiment is not a voter turnout study, and if the
number of available baseline covariates (excluding higher powers, other transformations, and interactions
between covariates) is 10 or fewer and does not exceed the limits above, we will include all the covariates in
our regressions.

In general, covariates should be measured before randomization. To make any exceptions to this rule, we
need to have a convincing argument that either (1) the variable is a measure of pre-randomization conditions,
and treatment assignment had no e�ect on measurement error, or (2) although the variable is wholly or
partly a measure of post-randomization conditions, it could not have been a�ected by treatment assignment.
(Rainfall on Election Day would probably satisfy #2.)

Occasionally a new source of data on baseline characteristics becomes available after random assignment (e.g.,
when political campaigns join forces and merge their datasets). To decide which (if any) variables derived
from the new data source should be included as covariates, we will consult a “blind jury” of collaborators or
colleagues. The jury should not see treatment e�ect estimates or any information that might suggest whether
inclusion of a covariate would make the estimated e�ects bigger or smaller. Instead, they should be asked
which covariates they would have included if the new data source had been available before the PAP was
registered.

6The purpose of this rule of thumb is to make it unlikely that adjustment leads to substantially worse precision or appreciable
finite-sample bias. If time allows, simulations (using baseline data or prior studies) could provide additional guidance during the
development of a PAP.
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Covariates should generally be chosen on the basis of their expected ability to help predict outcomes, regardless
of whether they appear well-balanced or imbalanced across treatment arms.7 But there may be occasions
when the covariate list specified in the PAP omitted a potentially important covariate (due to either an
oversight or the need to keep the list short when N is small) with a nontrivial imbalance. Protection against
ex post bias (conditional on the observed imbalance) is then a legitimate concern.8 However, if observed
imbalances are allowed to influence the choice of covariates,9 the following guidelines should be observed:

1. If possible, the balance checks and decisions about adjustment should be finalized before we see unblinded
outcome data.

2. The direction of the observed imbalance (e.g., whether the treatment group or the control group appears
more advantaged at baseline) should not be allowed to influence decisions about adjustment. We will
either pre-specify criteria that depend on the size of the imbalance but not its direction, or consult a
“blind jury” that will not see the direction of imbalance or any other information that suggests how the
adjustment would a�ect the point estimates.

3. The estimator specified in the PAP will always be reported and labeled as such, even if alternative
estimates are also reported. See also “Unadjusted estimates, alternative regression specifications, and
nonlinear models” below.

Missing covariate values

Observations with missing covariate values will be included in the regressions that estimate average treatment
e�ects, as long as the outcome measure and treatment assignment are non-missing. Ordinarily, methods for
handling missing values will have been specified in the PAP. If not, we will use the following approach:

1. If no more than 10% of the covariate’s values are missing, recode the missing values to the overall mean.
(Do not use arm-specific means.)

2. If more than 10% of the covariate’s values are missing, include a missingness dummy as an additional
covariate and recode the missing values to an arbitrary constant, such as 0.10 If the missingness
dummies lead us to exceed the M / 20 or N / 20 maximum number of covariates (see above under
“Choice of covariates”), revert to the mean-imputation method above.

Example: Recoding Missing Covariates

suppressMessages({
library(randomizr)
library(sandwich)
library(lmtest)

})

N <- 200

7As Bruhn and McKenzie (2009, 226) emphasize, “greater power is achieved by always adjusting for a covariate that is highly
correlated with the outcome of interest, regardless of its distribution between groups.”

8See Lin (2012b; 2013, 308) and references therein for discussion of this point.
9Commonly used standard error estimators assume that we would adjust for the same set of covariates regardless of which

units were assigned to which treatment arm. Letting observed imbalances influence the choice of covariates violates this
assumption. In the scenario studied by Permutt (1990), the result is that the significance test for the treatment e�ect has a true
Type I error probability that is lower than the nominal level—i.e., the test is conservative.

10This method is described in Gerber and Green (2012), p. 241.
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# Make some covariates
X1 <- rnorm(N)
X2 <- rbinom(N, size = 1, prob = 0.5)

# Make some potential outcomes
Y0 <- .6*X1 + 3*X2 + rnorm(N)
Y1 <- Y0 + .4

# Conduct a random assignment and reveal outcomes
Z <- complete_ra(N, m= 100)
Y_obs <- Y1*Z + Y0*(1-Z)

# Some covariate values are missing:
X1_obs <- X1
X2_obs <- X2

X1_obs[sample(1:N, size = 10)] <- NA
X2_obs[sample(1:N, size = 50)] <- NA

# Less than 10% of X1_obs is missing, so:
X1_obs[is.na(X1_obs)] <- mean(X1_obs, na.rm = TRUE)

# More than 10% of X2_obs is missing, so:
X2_missing <- is.na(X2_obs)
X2_obs[X2_missing] <- 0

# Mean-center the covariates
X1_obs_c <- X1_obs - mean(X1_obs)
X2_obs_c <- X2_obs - mean(X2_obs)
X2_missing_c <- X2_missing - mean(X2_missing)

# Conduct Estimation
fit_adj <- lm(Y_obs ~ Z + Z*(X1_c + X2_c + X2_missing_c))

# Robust Standard Errors
coeftest(fit_adj, vcov = vcovHC(fit_adj, type = "HC2"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.614419 0.183535 8.7962 8.091e-16 ***
## Z 0.626398 0.263746 2.3750 0.01853 *
## X1_c 0.233659 0.181516 1.2873 0.19955
## X2_c -0.039053 0.371192 -0.1052 0.91632
## X2_missing_c -0.119343 0.378039 -0.3157 0.75258
## Z:X1_c -0.180135 0.250866 -0.7181 0.47360
## Z:X2_c -0.346390 0.530964 -0.6524 0.51494
## Z:X2_missing_c 0.735601 0.529865 1.3883 0.16666
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
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Unadjusted estimates, alternative regression specifications, and nonlinear models

Our primary analysis will be based on a pre-specified covariate-adjusted estimator (unless N < 20), but we
will also report unadjusted estimates as a robustness check. Results from alternative regression specifications
may also be reported as specified in the PAP, or as allowed under “Choice of covariates” above, or as requested
by referees. We will make clear to readers which estimator was pre-specified as primary.

For binary or count-data outcomes, some referees prefer estimates based on nonlinear models such as logit,
probit, or Poisson regression. Although we disagree with this preference (the robustness of least squares
adjustment in RCTs is supported by both theory and simulation evidence),11 we will provide supplementary
estimates derived from nonlinear models (using marginal e�ects calculations) if requested by referees. We
prefer logits to probits because adjustment based on the probit MLE is not misspecification-robust.12

Covariate imbalance and the detection of administrative errors

We will perform a statistical test to judge whether observed covariate imbalances are larger than would
normally be expected from chance alone. In an experiment with a binary treatment and a constant probability
of assignment to treatment, the test involves a regression of the treatment indicator on the covariates and
calculation of a heteroskedasticity-robust Wald statistic for the hypothesis that all the coe�cients on the
covariates are zero (Wooldridge (2010), p. 62). The covariates to be included in the regression should be
specified in the PAP. (For voter turnout experiments, the SOP section “Issues specific to voter turnout
experiments” gives a default set of covariates in case the PAP fails to specify the choice.) If the experiment is
block-randomized with treatment probabilities that vary by block, we will also include dummy variables for
the varying treatment probabilities in the regression, and we will test the hypothesis that all coe�cients on
the covariates, excluding the treatment probability dummies, are zero.

We will use a permutation test (randomization inference) to calculate the p-value associated with the Wald
statistic.

In an experiment with multiple treatments, we will perform an analogous test using multinomial logistic
regression of treatment on covariates.

A p-value of 0.01 or lower should prompt a thorough review of the random assignment procedure and any
possible data-handling mistakes. If the review finds no errors, we will report the imbalance test, proceed
on the assumption that the imbalance is due to chance, and report estimates with and without covariate
adjustment.

Example: Permutation Test of Covariate Balance

suppressMessages({
library(randomizr)
library(sandwich)

})

# Generate Covariates

set.seed(1234567)

N <- 1000
11For asymptotic theory, see Lin (2013), where all the results are applicable to both discrete and continuous outcomes. For

simulations, see Humphreys, Sanchez de la Sierra, and van der Windt (2013) or Judkins and Porter (forthcoming).
12Freedman (2008); Firth and Bennett (1998). Lin gave an informal discussion in a comment on the Mostly Harmless

Econometrics blog.
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gender <- sample(c("M", "F"), N, replace=TRUE)
age <- sample(18:65, N, replace = TRUE)
lincome <- rnorm(N, 10, 3)
party <- sample(c("D", "R", "I"), N, prob=c(.45, .35,.2), replace=TRUE)
education <- sample(10:20, N, replace=TRUE)

# Conduct Random Assignment
Z <- complete_ra(N, 500)

# Regress treatment on covariates
fit <- lm(Z ~ gender + age + lincome + party + education)

# Obtain observed heteroskedasticity-robust Wald statistic
# See Wooldridge (2010), p. 62
# Null hypothesis is that the slope coefficients are all zero, i.e.
# R beta = 0
# where beta is the 7 x 1 vector of coefficients, including the intercept
# and R is the 6 x 7 matrix with all elements zero except
# R[1,2] = R[2,3] = R[3,4] = R[4,5] = R[5,6] = R[6,7] = 1

Rbeta.hat <- coef(fit)[-1]
RVR <- vcovHC(fit, type <- �HC0�)[-1,-1]
W_obs <- as.numeric(Rbeta.hat %*% solve(RVR, Rbeta.hat)) # Wooldridge, equation (4.13)

# Compare to permutation distribution of W

sims <- 10000
W_sims <- numeric(sims)

for(i in 1:sims){
Z_sim <- complete_ra(N, 500)
fit_sim <- lm(Z_sim ~ gender + age + lincome + party + education)

Rbeta.hat <- coef(fit_sim)[-1]
RVR <- vcovHC(fit_sim, type <- �HC0�)[-1,-1]
W_sims[i] <- as.numeric(Rbeta.hat %*% solve(RVR, Rbeta.hat))

}

# Obtain p-value
p <- mean(W_sims >= W_obs)
p

## [1] 0.8903

hist(W_sims)
abline(v = W_obs, lwd=3, col="red")
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Histogram of W_sims
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Analysis of block randomized experiments with treatment probabilities that vary
by block

Estimating treatment e�ects

When treatment assignment probabilities vary by block, we will use weighted least squares regression with
inverse probability-of-assignment weights (IPW) to estimate the average treatment e�ect (ATE), except in
extreme cases (defined below). See Gerber and Green (2012), section 4.5 for discussion of the IPW method.

An alternative approach, sometimes called the least-squares dummy variable (LSDV) method, is to run an
OLS regression of the outcome on treatment, block indicators, and covariates. The estimand for the LSDV
method is a weighted ATE, giving each block j a total weight proportional to NjPj(1 ≠ Pj), where Nj is
the number of subjects in the block and Pj is their probability of assignment to treatment (Angrist (1998),
p. 256; Angrist and Pischke (2009), p. 75; Gerber and Green (2012), p. 119). In contrast, the estimand for
the IPW method is the unweighted ATE, which gives block j a total weight proportional to Nj . We will use
IPW except in the extreme case where there is at least one block j such that

Njq
j Nj

> 20 NjPj(1 ≠ Pj)q
j NjPj(1 ≠ Pj) .

In that case, we will use LSDV and we will explain to readers that we pre-specified a weighted ATE as our
estimand in an attempt to improve precision. For background, see Angrist and Pischke (2009) (p. 76, footnote
23) and Gerber and Green (2012) (pp. 119-120).

For example, imagine a block-randomized experiment with two blocks: 500 of 1,000 subjects in block 1 are
assigned to treatment, while 5 of 100,000 in block 2 are assigned to treatment. The IPW estimand (the
unweighted ATE) places a total weight of N2/(N1+N2) = 99.01% on the second, relatively uninformative block,
while the LSDV estimand gives the same block a total weight of N2P2(1≠P2)/[N1P1(1≠P1)+N2P2(1≠P2)] =
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1.96%. Thus, block 2 is weighted over 50 times more heavily by IPW than by LSDV. In this situation, we
would use LSDV instead of IPW.

Presentation of statistics describing covariate balance

For the formal test for covariate balance, see the section above on “Covariate imbalance and the detection of
administrative errors”.

For tables or figures describing covariate balance, we will follow the advice in Gerber and Green (2012),
pp. 120-121, with the following amendment to their footnote 19: If LSDV is the primary treatment e�ect
estimator, then instead of using the weights in their equation (4.12), give each treatment group observation a
weight proportional to 1 ≠ Pj and each control group observation a weight proportional to Pj . (This results
in a weighted treatment group mean and weighted control group mean that give block j a total weight
proportional to NjPj(1 ≠ Pj), which matches the LSDV estimand.)

Presentation of statistics describing overall baseline characteristics of the study sample (not
separated by treatment arm)

If the primary treatment e�ect estimator is IPW, summary statistics on overall characteristics of the sample
should be unweighted, since the IPW estimand is the unweighted ATE. If LSDV is the primary treatment
e�ect estimator, the summary statistics should give each observation a weight proportional to Pj(1 ≠ Pj),
since this gives block j a total weight proportional to NjPj(1 ≠ Pj), which matches the LSDV estimand.

Sample exclusions and the coding of outcome variables

In general, we will avoid coding outcomes in ways that cause subjects to be excluded from the estimation
of average treatment e�ects. Such exclusions are especially problematic when treatment assignment may
a�ect the chances that a sample member will be excluded. For example, for an outcome such as the amount
donated to a political campaign, we will not exclude subjects with outcome values of zero from our analyses.

Exceptions include instances where sample exclusions do not threaten the symmetry between the randomly
assigned treatment arms. For example, in an experiment with a treatment/placebo design, we will report
analyses that exclude noncompliers if checks #1-4 in the section on “Treatment/placebo designs” yield
satisfactory results.

In a voter turnout experiment, we will exclude subjects who voted before treatment began, since their
outcomes could not have been a�ected by treatment (see the section on “Issues specific to voter turnout
experiments”). In other cases where data collected after random assignment identifies a subgroup of subjects
whose outcomes were determined before treatment began, we will exclude that subgroup if (1) there was no
plausible way for outcomes to be a�ected by treatment assignment before the actual treatment began and (2)
empirical investigations analogous to checks #2-4 in the section on “Treatment/placebo designs” yield no
evidence that this sample exclusion creates noncomparability between the treatment arms.

The section on “Issues specific to survey or laboratory experiments” discusses other examples.

Noncompliance

In experiments that encounter noncompliance with assigned treatments, our analysis will include a test of the
hypothesis that the average intent-to-treat e�ect is zero.
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Estimating treatment e�ects when some subjects receive “partial treatment”

Gerber and Green (2012) (pp. 164-165) discuss several approaches for estimating treatment e�ects when
some treatment group members receive a full dose of the intended intervention and others receive only part
of it. If there is no noncompliance in the control group, we will follow the approach where “the researcher
simply considers all partially treated subjects as fully treated” (Gerber and Green 2012, 165) (thus adopting
the most expansive definition of treatment in order to make the instrumental variables exclusion restriction
plausible), unless either the variation in treatment dosage is randomized or the PAP specifies both the dosage
measure and the method for analyzing the dose-response relationship.

Treatment/placebo designs

In a treatment/placebo design, subjects are randomly assigned to be encouraged to receive either the treatment
or a placebo (Gerber and Green 2012, 161–64). Those who actually receive the treatment or placebo are
revealed to be compliers. The intended analysis compares the outcomes of treatment group compliers
vs. placebo group compliers. However, if the encouragement e�orts di�er between the two arms, the two
groups of compliers may not be comparable. To evaluate their comparability, we will perform the following
checks:

1. Implementation: Were the treatment and placebo administered by the same personnel? Were these
personnel blinded to subjects’ random assignments until after compliance status was determined, or if
not, were the treatment and placebo administered symmetrically in their timing, place, and manner?

2. Comparison of compliance rates across arms: We will perform a two-tailed unequal-variances t-test of
the hypothesis that treatment assignment does not a�ect the compliance rate.

3. Comparison of compliers’ baseline characteristics across arms: Using compliers only, we will estimate a
linear regression of the treatment group indicator on baseline covariates and perform a heteroskedasticity-
robust F-test (Wooldridge (2010), p. 62) of the hypothesis that all coe�cients on the covariates are
zero.

4. Comparison of noncompliers’ outcomes across arms: Using noncompliers only, we will perform a
two-tailed unequal-variances t-test of the hypothesis that treatment assignment does not a�ect the
average outcome.

In checks #2-#4, p-values below 0.05 will be considered evidence of noncomparability.

If any of those checks raises a red flag, we will use two-stage least squares to estimate the complier average
causal e�ect, using assignment to the treatment as an instrumental variable predicting actual treatment. In
other words, we will analyze the experiment as if it had a conventional treatment/baseline design instead of a
treatment/placebo design.

Nickerson’s rolling protocol design

In Nickerson’s rolling protocol design (Nickerson 2005), researchers create a randomly ordered list of treatment
group members (or clusters of treatment group members) and insist that treatment attempts follow this
random order. When resources for treatment attempts run out, the bottom portion of the randomly ordered
list (i.e., those treatment group members for whom treatment was never attempted) is moved into the control
group. To check that this procedure creates comparable groups, we will perform the following checks:

1. Movement of treatment group members into the control group must be based strictly on the random
ordering of the list. If, within some section of the list, the personnel administering treatment have
nonrandomly chosen to attempt treatment for some subjects but not others, then the entire section and
all preceding sections should remain in the treatment group.
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2. The decision to stop treatment attempts must be based solely on resources, not on characteristics of
the subjects or clusters.

3. Comparison of baseline characteristics: We will estimate a linear regression of the proposed treatment
group indicator on baseline covariates and perform a heteroskedasticity-robust F-test (Wooldridge
(2010), p. 62) of the hypothesis that all coe�cients on the covariates are zero. A p-value below 0.05 will
be considered evidence of noncomparability.

If these checks cast doubt on the comparability of treatment and control groups, we will not move any
unattempted treatment group members into the control group.

Attrition

“Attrition” here means that outcome data are missing. (When only baseline covariate data are missing, we
will still include the observations in the analysis, as explained under “Missing covariate values”.) Often, it is
unclear theoretically whether missingness threatens the symmetry between treatment and control groups. We
will routinely perform three types of checks for asymmetrical attrition:

1. Implementation: Were all treatment arms handled symmetrically as far as the timing and format of data
collection and the personnel involved? Did each arm’s subjects have the same incentives to participate
in follow-up? Were the data collection personnel blind to treatment assignment?

2. Comparison of attrition rates across treatment arms: In a two-arm trial, we will perform a two-tailed
unequal-variances t-test of the hypothesis that treatment does not a�ect the attrition rate. In a
multi-arm trial, we will perform a heteroskedasticity-robust F-test (Wooldridge (2010), p. 62) of the
hypothesis that none of the treatments a�ect the attrition rate. In either case, we will implement the
test as a Studentized permutation test—i.e., a test that compares the observed t- or F-statistic with its
empirical distribution under random reassignments of treatment.

3. Comparison of attrition patterns across treatment arms: Using a linear regression of an attrition
indicator on treatment, baseline covariates, and treatment-covariate interactions, we will perform a
heteroskedasticity-robust F-test of the hypothesis that all the interaction coe�cients are zero. The
covariates in this regression will be the same as those used in the covariate balance test (see the section
on “Covariate imbalance and the detection of administrative errors”). As in check #2, we will implement
the test as a Studentized permutation test.

In checks #2 and #3, p-values below 0.05 will be considered evidence of asymmetrical attrition.

If any of those checks raises a red flag, and if the PAP has not specified methods for addressing attrition bias,
we will follow these procedures:

1. Rely on second-round sampling of nonrespondents, combined with extreme value bounds (Aronow et al.
2015) if (a) the project has adequate resources and (b) it is plausible to assume that potential outcomes
are invariant to whether they are observed in the initial sample or the follow-up sample. If either (a) or
(b) is not met, go to step 2.

2. Consult a disinterested “jury” of colleagues to decide whether the monotonicity assumption for trimming
bounds (Lee 2009; Gerber and Green 2012, 227) is plausible. If so, report estimates of trimming bounds;
if not, report estimates of extreme value (Manski-type) bounds (Gerber and Green (2012), pp. 226-227).
(If the outcome has unbounded range, report extreme value bounds that assume the largest observed
value is the largest possible value.) In either case, also report the analysis that was specified in the PAP.

15



Outliers

Except as specified in the PAP or as part of a supplemental robustness check, we will not delete or edit
outlying values merely because they are very large or very small. However, it is appropriate for outlying
values to trigger checks for data integrity, as long as the process and any resulting edits are results-blind and
symmetric with respect to treatment arm.

When randomization doesn’t go according to plan

Verifying that randomization was implemented as planned

We will have at least two team members check each computer program used to randomly assign treatment,
and we will make these programs publicly available. In all such programs, we will use the seed value 1234567
for the random number generator, so that the resulting assignments can be replicated and verified.

See the section “Covariate imbalance and the detection of administrative errors” for a description of the
statistical test we will use to judge whether observed covariate imbalances are larger than would normally
be expected from chance alone. In addition to reporting the result of this test, we will follow the reporting
guidelines in the “Allocation Method” section of Gerber et al. (2014) (Appendix 1, part C).

In the event that these checks reveal any errors, we will report the errors and take them into account in any
analyses we report (see below for examples). We will add more specific guidance and examples to our SOP as
we learn from our own and/or other researchers’ experiences.

Learning of a restricted randomization

Sometimes we may learn or realize ex post that certain randomizations were disallowed. For example, an
NGO partner may reveal that they would have canceled the RCT if a particular unit had not been assigned to
the treatment group. Or, we may realize that we implicitly did a restricted randomization, since we checked
covariate balance prior to implementing the treatment assignment, and if there had been a large enough
imbalance, we would have re-randomized.

We will reveal such implicit restrictions in our research reports and articles.

If we can formalize the implicit restriction and reconstruct the set of admissible randomizations, we will
analyze the data as suggested in Gerber and Green (2012) (Box 4.5, p. 121): First, if the treatment and
control groups are of di�erent sizes, we will use inverse probability-of-assignment weights to estimate the
average treatment e�ect (estimating the weights by simulating a large number of admissible randomizations
and tabulating the fraction of randomizations that assign each subject to treatment or control). Second, we
will use randomization inference (excluding the disallowed randomizations) to estimate p-values.

If we cannot formalize the implicit restriction, we will keep the pre-specified analysis strategy but will note
the issue for readers (e.g., by saying that we checked for covariate balance before implementing treatment
assignment but did not have a fixed balance criterion in mind).

Duplicate records in the dataset used for randomization

After treatment has begun, we may learn that there were duplicate records in the dataset that was used
to randomly assign subjects. This raises the problems that (1) a subject could be assigned to more than
one arm, and (2) subjects with duplicate records had a higher probability of assignment to treatment than
subjects with unique records.

How we handle this situation depends on two questions.

16



Question 1: Were the multiple assignments of duplicate records made simultaneously, or can they be ordered
in time?

For example, when applicants for a social program are randomly assigned as their applications are processed,
random assignment may continue for months or years, and in unusual cases, a persistent applicant who was
originally assigned to the control group may later succeed in getting assigned to treatment under a duplicate
record. In that case, the existence and number of duplicate records may be a�ected by the initial assignment.

If the assignments can be ordered in time, we will treat the initial assignment as the correct one, and any
noncompliance with the initial assignment will be handled the same way as for subjects who did not have
duplicate records.

If the assignments were made simultaneously, Question 2 should be considered.

Question 2: Is it reasonable to say that if a subject was assigned to more than one arm, one of her assignments
“trumps” the other(s)?

For example, in a two-arm trial where the treatment is an attempted phone call and the control condition is
simply no attempt (without any active steps to prohibit a phone call), it seems reasonable to decide that
treatment trumps control—i.e., assigning a subject with duplicate records to both conditions is like assigning
her to treatment. In contrast, in a treatment/placebo design where the treatment and placebo are attempted
conversations about two di�erent topics, we would hesitate to assume that treatment trumps placebo. And in
a three-arm trial with two active treatments and a control condition, it might be reasonable to assume that
one treatment trumps the other if the former includes all of the latter’s activities and more, but otherwise we
would hesitate to make that assumption.

If the trump assumption can be reasonably made, then in the analysis, we will take the following steps:

1. Deduplicate the records.

2. Use the trump assumption to reclassify any subject who was assigned to more than one arm.

3. Calculate each subject’s probabilities of assignment to each arm, where “assignment” means the unique
classification from step 2. These probabilities will depend on the number of records for the subject in
the original dataset.

4. Use inverse probability-of-assignment weighting (IPW) to estimate treatment e�ects.

If the trump assumption cannot be reasonably made, then we will replace step 2 with a step that excludes from
the analysis any subject who was assigned to more than one arm. We will then check whether steps 3 and 4
still need to be performed. (For example, in a two-arm Bernoulli-randomized trial with intended probabilities
of assignment of 2 / 3 to treatment and 1 / 3 to control, a subject with two records has probability 4 / 9 of
two assignments to treatment, 4 / 9 of one assignment to treatment and one to control, and 1 / 9 of two
assignments to control. Conditional on remaining in the analysis after we exclude subjects who were assigned
to both treatment and control, she has probability 4 / 5 of assignment to treatment.)

Example: Fundraising Experiment

Suppose a fundraising experiment randomly assigns 500 of 1,000 names to a treatment that consists of an
invitation to contribute to a charitable cause. However, it is later discovered that 600 names appear once and
200 names appear twice. Before the invitations are mailed, duplicate invitations are discarded, so that no one
receives more than one invitation.

In this case, the experimental procedure justifies the trump assumption. Names that are assigned once or
twice are in treatment, the remainder are in control. It’s easy enough in this example to calculate analytic
probabilities (0.5 for those who appear once, 1 ≠ (500/1000) ◊ (499/999) ¥ 0.75 for those who appear twice).
However, in some situations, simulating the exact procedure is the best way to determine probabilities (it can
also be a good way to check your work!). Here is a short simulation in R that confirms the analytic solution.
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# Load randomizr for complete_ra()
library(randomizr)

# Make a list of 1000 names. 200 names appear twice
name_ids <- c(paste0("name_", sprintf("%03d", 1:600)),

paste0("name_", sprintf("%03d", 601:800)),
paste0("name_", sprintf("%03d", 601:800)))

# Conduct simulation
sims <- 10000
Z_mat <- matrix(NA, nrow = 800, ncol = sims)
for(i in 1:sims){

# Conduct assignment among the 1000 names
Z_1000 <- complete_ra(1000, 500)
# Check if names were ever assigned
Z_800 <- as.numeric(tapply(Z_1000, name_ids, sum) > 0)
# Save output
Z_mat[,i] <- Z_800

}

# Calculate probabilities of assignment
probabilities <- rowMeans(Z_mat)
plot(probabilities, ylim=c(0,1))
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The plot confirms the analytic solution. The first 600 names have probability of assignment 0.5, and names
601 through 800 (the duplicates) have probability 0.75.
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Other transparency issues

Canceled, stopped, or “failed” RCTs

In extreme circumstances, an RCT may “fail” in the sense that unanticipated problems impose such severe
limitations on what we can learn from the study that it becomes unpublishable. Such problems may include
a failure to enroll an adequate number of subjects or to implement a meaningful treatment, stakeholder
resistance that leads to cancellation of the RCT, or evidence of harm that persuades researchers to stop the
RCT early for ethical reasons.13

In such cases, we will make publicly available a summary of the design and implementation, the results (if
any), and the apparent causes of failure.

Di�erences between the pre-specified analyses and those that appear in the ar-
ticle

Each published article will reference its PAP. If the article contains analyses that deviate from the PAP, it
will make clear that these analyses were not pre-specified. Conversely, if the article omits any pre-specified
analyses, it will give a brief description of them and they will be made available in a document that is
referenced in the article.

Issues specific to voter turnout experiments

Because our lab frequently evaluates the e�ects of voter mobilization campaigns, this SOP includes rules
designed to impose uniformity across trials.

Coding of voter turnout outcomes often varies across jurisdictions, with some administrative units reporting
only whether someone voted and others reporting whether registered voters voted or abstained. We will code
turnout as 1 if the subject is coded as having voted and 0 otherwise.

In cases where a post-election list of registered voters no longer includes some members of the treatment and
control groups, we will evaluate whether attrition is plausibly independent of treatment assignment using the
procedures discussed above. If so, the analysis will focus on just those subjects who have not been removed
from the voter registration rolls.

In some instances, voter turnout records include the date on which a ballot is cast. When voter turnout
data is date-stamped, our analysis sample will exclude those who voted before treatment began, since their
outcomes could not have been a�ected by treatment.

In canvassing and phone-banking experiments, noncompliance is common. In such cases, contact will be
coded broadly to include any form of interaction with the subject that might a�ect turnout – even a very
brief conversation whereby the respondent hangs up after the canvasser introduces himself/herself. Messages
left with housemates count as contact. Interactions that do not count as contact include busy signals, no one
opening the door, or failure to communicate with the respondent due to language barriers. A phone call from
a number with a recognizable caller ID (e.g., “Vote ’98 Headquarters”) would count as contact.

In instances where canvassing or calling e�orts fail to attempt large swaths of the originally targeted treatment
group (e.g., a certain group of precincts), an assessment will be made of whether failure-to-attempt was
related to the potential outcomes of the subjects. If the scope of the canvassing or calling e�ort fell short
for reasons that seem to have nothing to do with the attributes of the subjects who went unattempted, the
subject pool will be partitioned and the analysis restricted to the attempted precincts. (See the section on
“Nickerson’s rolling protocol design”.)

13For related discussion, see Greenberg and Barnow (2014).
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If the PAP fails to specify the choice of covariates for regression adjustment or for the test of covariate balance,
the default set of covariates will include voter turnout in all past elections for which data are available in the
voter file, excluding any elections in which turnout rates in the subject pool were below 5%.

Issues specific to survey or laboratory experiments

Do not exclude subjects who discern the purpose of the experiment

Subjects in a lab or survey experiment may indicate in a post-experimental debriefing session that they
discerned the hypothesis that we sought to test. We will not exclude these subjects from the analysis. The
treatment assignment could have a�ected whether subjects discerned the hypothesis (see the section on
“Sample exclusions and the coding of outcome variables”).

Whether to exclude subjects who display inattention in survey experiments

In an online survey experiment, some subjects may be clicking answers arbitrarily to complete the survey
quickly. To detect such behavior, researchers sometimes insert “screener” questions (Berinsky, Margolis, and
Sances (2014)) to assess whether subjects are paying attention to the content of the survey (e.g., a question
that simply directs respondents to check a particular box). In such cases, we will report an analysis excluding
the “inattentive” respondents (those who answered the screener questions incorrectly) if (1) there is nothing
about the treatment that would cause inattention to be more or less common in one treatment arm and (2)
we find no evidence that this sample exclusion creates noncomparability between the treatment arms when
checks #2-#4 from the section on “Treatment/placebo designs” are performed in this context (classifying
“inattentive” respondents as noncompliers). We will also report results from the full sample as a robustness
check.

If either condition (1) or condition (2) above is not satisfied, we will not exclude the “inattentive” respondents.
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