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1 Introduction

This document outlines our pre-analysis plan for using Thompson sampling to test the effects

of job search assistance in Jordan. We will work with a population that is composed of Syrian

refugees and Jordanian nationals residing in urban areas of Jordan. Jordan offers a unique

opportunity to study refugees’ integration in the labour market. While in many countries

refugees do not have the right to work, or have to clear long bureaucratic hurdles before

being granted such right, Jordan has recently passed a series of reforms – known as the

Jordan Compact – which give refugees the right to work in low-skilled formal jobs. However,

since the introduction of the reform, formal employment rates among refugees have failed to

grow as rapidly as expected. In this project, we will evaluate interventions that are tailored

to removing the main obstacles refugees may encounter in the formal labour market.

2 Summary of intervention

2.1 Description of treatments

We have designed three interventions to support job search in this context. These interven-

tions will be denoted by D ∈ {0, 1, 2, 3}, where 0 is the control group. These interventions

provide financial, information, and psychological support. Here is a brief description of each

intervention:

(i) Financial support. We will offer an unconditional transfer of the value of 65 JOD

(91.5 USD at the time of writing). This transfer is designed to support the recipient to
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pay for the cost of job search, which includes transport, grooming, time costs and, for

at least some study participants, child care.

(ii) Information support. We will provide information on (i) the formal job search and

application process, and (ii) what to expect from a formal job. This information will be

delivered through flyers and a testimonial video describing the job search process from

the eyes of a job-seeker. Syrian refugees have had little exposure to the formal labour

market in Jordan and this intervention is designed to fill this information gap.

(iii) Psychological support. We will provide a job-search planning session and SMS

reminders to help respondents overcome self-control problems related to job search.

This intervention is motivated by recent evidence indicating substantial self-control

problems and intention-behaviour gaps in job search (DellaVigna and Paserman, 2005;

Caliendo et al., 2015; Abel et al., 2017).

Parallel experiment, described in separate pre-analysis plan In parallel, we will

also evaluate a direct placement intervention. The direct placement intervention will be

the subject of a separate pre-analysis plan, and we anticipate that it will be reported in a

different academic paper to the paper that discusses these job search interventions.

2.2 Institutional background and sample selection

Jordan is a middle-income country that has experienced a very large inflow of refugees since

the beginning of the Syrian crisis. In February 2016, Jordan signed the Jordan Compact, a

policy that created a system of work permits for its population of refugees. In this project,

we partner with an international NGO that works on refugee policy to evaluate a number of

interventions designed to help refugees find work in Jordan.

We plan to interview a sample of individuals aged 18-45 that comprises both registered

Syrian refugees and Jordanian nationals. To be eligible for this study, individuals have to

be willing to take up low-skilled wage work in the immediate future. Individuals will be

reached through a number of methods that have been piloted by the NGO. These include

sampling from lists of refugees and unemployed people collected by community organizations

and through door-to-door sampling in selected neighborhoods.

We plan to sample study participants continuously from February 2019 to September 2019.

During these interviews, we will check eligibility and further collect information on jobseeker

characteristics which will be used by our treatment assignment algorithm (see below).

Study participants will be randomized into a treatment group at the end of the interview.

2



Randomization will be carried out automatically by the handheld machine operated by the

enumerator. The probability of being assigned to a given treatment group will be determined

adaptively using the algorithm described in detail below.

After the initial interview, we will follow up with study participants at four points in time.

Individuals will be administered full interviews one, three, and six months after the initial

interview. We describe how we will analyze data from these interviews in Section 4.3 below.

Further, we will administer a short phone interview focused on employment outcomes six

weeks after the initial interview. This short interview will provide us with a binary measure

of current wage employment – which we denote Yit – that we will use for the treatment

assignment algorithm.

2.3 Conditioning variables for treatment assignment

We will allow treatment probabilities to vary with exogenous covariates X. We will in par-

ticular condition on the following binary covariates, resulting in 16 strata:

(i) nationality (a dummy for whether the respondent is Jordanian, defined. as having a

Jordanian national ID),

(ii) gender (a dummy for being female),

(iii) education (a dummy for having completed high school or more), and

(iv) work experience (a dummy for having experience in wage employment).

3 Treatment assignment

Our experiment has two objectives. Our primary objective is to get as many experimental

participants into formal employment as possible. Our secondary objective is to test the

effectiveness of alternative interventions. These two objectives suggest different experimental

designs. Our design, described in this section, trades off these two objectives.

3.1 Prior

Let t denote the day of intervention, and let i index individuals within days. Note that we do

not have a panel, so that individual i on day t is different from individual i on day t′ when

t 6= t′. Let x index strata, and let d denote treatment values. Let θdx be the corresponding
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average potential outcome. Assume

Y d
it |(Xit = x, θdx, αd0, β

d
0) ∼ Ber(θdx)

θdx|(αd0, βd0) ∼ Beta(αd0, β
d
0)

(αd0, β
d
0) ∼ π,

where π is some prior distribution for (αd, βd) (specified in Section 3.4 below), and parameters

are independent across treatment arms. It follows immediately that sdxt , the number of

successes for treatment d and stratum x, follows a Beta-Binomial distribution given (αd, βd)

and ndxt . Hierarchical Bayesian models of this form are discussed in Gelman et al. (2014),

chapter 5.

3.2 Sampling from the posterior

Denote by θ,mt, rt the vectors of parameters, cumulative trials, and cumulative successes

indexed by both d and x, and by α,β the vectors of hyperparameters indexed by d. Let ρ in-

dex replication draws, with ρ ranging from 1 to R. We sample from the posterior distribution

of (θ,α,β) given mt−1, rt−1 using the following Markov Chain Monte Carlo algorithm.

(i) Gibbs step:

Given αρ−1 and βρ−1, draw θdx from the Beta(αdρ + sdx, βdρ +mdx − sdx) distribution.

(ii) Metropolis steps:

� Given βρ−1 and θρ, draw αdρ by sampling from a normal proposal distribution

(truncated below), and accept this draw if an independent uniform draw is less

than the ratio of the posterior for the new draw, relative to the posterior for αdρ−1.

Otherwise set αdρ = αdρ−1.

� Similarly for βρ−1 given θρ and αρ−1.

Markov Chain Monte Carlo methods are reviewed in Gelman et al. (2014), chapter 11. This

algorithm converges to a stationary distribution that equals the joint posterior of α, β and

θ given mt, rt. In particular, we have that the posterior probability of a treatment d being

optimal given x, in the sense of maximizing the probability of employment, is given by

P

(
d = arg max

d′
θd

′x|mt, rt

)
= plim

R→∞

1
R

R∑
ρ=1

1

(
d = arg max

d′
θd

′x
ρ

)
,

where θdx is the probability for a participant of type x to find employment when receiving

treatment d.
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3.3 Assignment algorithm

Denote

p̂dx = 1
R

B+R∑
ρ=B

1

(
d = arg max

d′
θd

′x
ρ

)
,

the estimated posterior probability that d is the optimal treatment given x. B is the so-called

“warm-up” period for the MCMC algorithm.

Two popular algorithms for assigning treatment are fully random assignment and Thomp-

son sampling. Our experiment will use a combination of these. Fully randomized sampling

assigns treatment d with probability 0.25 to units in every stratum. This maximizes power

for tests of non-zero treatment effects.

Thompson sampling assigns treatment d with probability p̂dx to units in stratum x.

Thompson sampling minimizes expected regret (cf. Bubeck and Cesa-Bianchi 2012), or equiv-

alently maximizes average outcomes, in the large sample limit. In particular expected regret

only grows at a logarithmic rate with the number of experimental units.

Our primary goal is to maximize the labor market outcomes of experimental participants,

but power for all treatment comparisons is a secondary objective. In our sampling proce-

dure, we therefore assign treatment d to units in stratum x with probability

(1− γ) · p̂dx + γ · 0.25.

where γ is the share of observations that are randomized between treatment arms with equal

probability.

In our experiment, there will be delayed observability of the employment outcomes

Yit – we measure employment 6 weeks after the intervention for each participant. As a

consequence, treatment assignment is conditioned only on the outcomes of participants from

6 weeks before, or earlier, and we assign participants in the first 6 weeks randomly to each

treatment arm with probability 0.25.

3.4 Tuning parameters

The algorithm as described above depends on several tuning parameters. We will use the

following parameters for our prior and treatment assignment algorithm:

� We choose a prior for the hyper-parameters (α, β) with density equal to (α + β)−2.5,

up to a multiplicative constant. In doing so, we follow the recommendation of Gelman

et al. (2014), p.110, for picking a “non-informative” hyper-prior.
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� The share of observations fully randomized is set to γ = 0.2, which implies that

the probability of being assigned to each treatment is bounded below by 0.05.

� For Markov Chain Monte Carlo draws from the posterior, we use a warm-up period

of B = 1, 000, and then draw R = 10, 000 replications; averaging over these gives

our estimated posterior distribution. These values are generously chosen relative to

standard recommendations (cf. Gelman et al. (2014) chapter 11), making convergence

likely. In our simulations these values yield stable posterior probabilities.

4 Outcomes

This section describes the estimates, credible sets, and randomization tests that we will report

in our paper.

4.1 Estimates

Let px be the sample share of participants in stratum x and, as before, let p̂dx denote the

posterior probability that some treatment d is optimal, estimated using MCMC replication

draws; similarly for Ê which denotes the estimated posterior expectation.

Policy comparisons The main goal of this experiment is to find treatments that maximize

the probability of employment, for each demographic subgroup. We want to do so both within

the experiment (for the experimental participants themselves), and after the experiment (in

a possible roll-out of the best policy for a wider population).

To evaluate our success, we will report the following welfare contrasts. First, within the

experiment, we compare the average potential outcomes for the actually chosen treatment

assignment to the average that would have obtained under random assignment,

∆1 = 1
N

∑
i,t

(
Ê
[
θDitXit

]
− 1

4

∑
d

Ê
[
θdXit

])

This estimate measures how much better we did for our experimental participants, compared

to a conventional design with fully random assignment.

Second, after the experiment, we wish to compare the optimal targeted policy, and the
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optimal non-targeted policy, to the default of no intervention (treatment 0),

∆2 =
∑
x

(
max
d
Ê
[
θdx
]
− Ê

[
θ0x
])

px,

∆3 = max
d

∑
x

(
Ê
[
θdx
]
− Ê

[
θ0x
])
px.

The definition of ∆2 allows the optimized d to depend on x, while the definition of ∆3 requires

the same d to be implemented for all x. In particular ∆2 ≥ ∆3 ≥ 0 by construction.

Average potential outcomes In addition to these policy comparisons, we will also report

more conventional estimates, of average potential outcomes, both conditional on covariates

and unconditional, and average treatment effects. That is, we will report Ê
[
θdx
]

for all x

and d, as well as
∑

x Ê
[
θdx
]
px for all d, and, for d = 1, 2, 3,

δd =
∑
x

(
Ê
[
θdx
]
− Ê

[
θ0x
])
px.

Probability optimal Lastly, for each treatment we will report again the posterior proba-

bility that it is optimal, both conditionally and unconditionally. That is, we will report p̂dx

for all d and x, as well as
∑

x p̂
dxpx for all d.

4.2 Tests and Inference

Primary: Bayesian inference Our primary form of inference will be Bayesian, based on

the hierarchical default prior described in Section 3.1 above. To construct credible sets (i.e.,

sets that have a given posterior probability of containing the true parameters), we will report

0.025 and 0.975 quantiles, based on MCMC draws. We will do so for all our estimates listed

in the previous section. This yields sets that have a posterior probability of 95% to contain

the true parameters, conditional on the data of the experiment.

We would like to emphasize that standard Bayesian inference, in contrast to standard

frequentist inference, remains valid for adaptive designs such as ours, since the likelihood

function is not affected by adaptivity. In large samples, however, our credible sets also have

95% frequentist coverage probability, i.e., they are confidence sets in the usual sense; cf.

van der Vaart (2000), chapter 10.

As secondary information, we will also report 0.05 and 0.95 quantiles of the posterior

distribution, as well as posterior standard deviations.
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Secondary: Randomization inference Additionally, we will provide randomization-

based p-values that are valid under the sharp null hypothesis that there are no treatment

effects, i.e., under the null that θdx = θd
′x for all d, d′, x. Under this null, we can generate

counterfactual data by re-running our assignment algorithm repeatedly, leaving outcomes as

they are in our data, but generating new treatment assignments. The distribution of test-

statistics over this re-randomization distribution can be used to construct critical values and

p-values that are exact in finite samples, under the sharp null.

We will provide randomization-based p-values for one-sided tests using the welfare con-

trasts ∆1,∆2, and ∆3. These provide tests with power, respectively, for the questions “Did

our sampling procedure improve in-sample welfare relative to full randomization?” and “Does

the optimal treatment (conditional or unconditional) improve welfare in the population rel-

ative to the control treatment?”

We will additionally provide randomization-based p-values for two-sided tests using the

estimated treatment effects δ1, δ2 and δ3. These provide tests with power for the questions

“Are average outcomes different under treatment d, relative to the control treatment?”

Re-optimization and inference A key question in defining both credible sets and ran-

domization inference is whether d has to be “re-optimized” across different draws from the

posterior or from the randomization distribution, in the definition of ∆2 and ∆3 (cf. Andrews

et al. 2018). As it turns out, the answer is “no” for credible sets, and “yes” for randomiza-

tion inference. The reason is that credible sets are defined in terms of the distribution of

θ conditional on the observed data. The optimized d is a function of these data, and thus

non-random from the perspective of Bayesian inference. By contrast, randomization-based

p-values are defined in terms of the distribution of treatment assignments, conditional on the

sample vector of covariates and potential outcomes. The optimized d does depend on the

realized treatment assignment, and thus varies across draws.

Relatedly, note that there is no reason that the conclusions of Bayesian inference and

randomization inference should coincide, since they provide answers to different questions.

4.3 Secondary outcomes – follow-up interviews

We will carry out follow-up interviews with study participants one, three and six months

after treatment. In these interviews, we will collect data about employment and earnings.

Further, we will measure a number of outcomes that we expect to change in case employment

and earnings are affected: well-being, social integration, and migration decisions. We will

consider the following outcomes:
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1 Wage employment : A dummy for whether the respondent currently has a wage-paying

job.

2 Earnings: Earnings from main job (0 if not in wage employment).

3 Well-being : A well-being index that comprises (i) monthly expenditure, (ii) life sat-

isfaction (0-10 scale), (iii) an indicator of negative affect (feeling anxious on previous

day on a 0-10 scale), (iv) an indicator of positive affect (feeling happy on previous day

on a 0-10 scale). (We will construct this index using the method outlined in Anderson

(2008).)

4 Social integration: An index of seven social integration questions (each question asks

the respondent to report on a scale from 1 to 5 how much he or she agrees with a given

statement, for example, ‘I feel connected to Jordan’). (We will construct this index

using the method outlined in Anderson (2008).)

5 Migration: A dummy for whether the respondent intends to migrate to a different

country in next 12 months (this does not include return migration to Syria).

For each of these outcomes W j
it, j = 1, . . . , 5, we will report weighted averages of the

form

βdj = 1
N

∑
it

1(Dit = d)

pdx
·W j

it,

where

pdx =

∑
it 1(Dit = d,Xit = x)∑

it 1(Xit = x)
.

and N is the total number of experimental participants.

For each of these βdj , we will report two-sided p-values based on randomization infer-

ence under the sharp null, as described for our primary outcomes above.

4.4 Heterogeneity by nationality

We will repeat this analysis (in particular, the analysis of section 4.3) separately for those

who hold a Jordanian national ID and those who do not.

4.5 Exploratory analysis

We anticipate we will run additional exploratory analysis, motivated by the results, to inves-

tigate mechanisms.
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