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1 Introduction

This project explores the direct and network effects of communication messages on tax compliance and
paperless billing sign-up. We conduct a randomized communication campaign in a large municipality
of Argentina where neighbors are required to pay a monthly fee on their real estate, locally known as
Tasa por Servicios Generales (TSG), which accounts for most of the local own revenues in Argentine
municipalities. The municipality where the experiment takes place has recently enabled a paperless
billing option for taxpayers to receive their monthly bill by e-mail in lieu of the regular paper bill. Our
campaign consists of sending letters to randomly selected dwellings where we remind neighbors about
the paperless option, how to sign up, and we also include information about the status of the account,
due dates, past due debt, etc. Our goal is to study the effects on monthly payments and the sign-up to
digital billing, and also to analyze whether the campaign creates spillover effects on neighbors that live
nearby but that do not receive a letter. In this Pre-Analysis Plan we describe the administrative data
to be used and we explain the experimental design, treatment effect estimation, power calculations, and
balance checks.

2 Data Description

We will use administrative data provided by the revenue agency of the municipality where the experiment
takes place. The unit of observation is an account (cuenta) which coincides with a dwelling unit. The data
contains the following variables for the billing details and some individual demographic characteristics of
the account holder (titular):

• account number (unique ID)

• address of the account

• block number

• odd or even side of the block
∗Corresponding author: Guillermo Cruces, E-mail: guillermo.cruces@nottingham.ac.uk
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• name of locality (neighborhood)

• year and month of the fee (12 fees per year)

• monthly fee (in pesos)

• paid fee (amount in pesos)

• indicator for monthly fee payment

• indicator for early annual fee payment

• date of payment

• due date of fee

• means of payment

• type of account (residential house, apartment, retail store, factory, etc.)

• indicator for electronic payment method

• days overdue

• indicator for email address

• indicator for an account also appearing in the provincial property registry

• gender of the account holder

• age of the account holder

• linear front meters of the lot/property

• assessed value of the property

• delivery date of the campaign letter

These billing details and payments are available on a monthly basis for current and previous billing cycles.

2.1 Baseline data

For the randomization, power calculation, and simulations, we use baseline data from the year 2019. The
data set is restricted to blocks with size between 8 and 50 accounts. See Figure 1 and Table 1.
We make use of three different outcomes:

• pago todas: dummy variable equal to 1 if the account paid the twelve bills in 2019,

• pago alguna: dummy variable equal to 1 if the account paid at least one bill,

• pago seis: dummy variable equal to 1 if the account paid six bills or more.

Table 1 shows some descriptive statistics for the year 2019. Our sample size consists of 68,808 accounts
distributed in 3,982 blocks. About 45 percent of the accounts paid the twelve bills and about 35 percent
did not pay any bill. We call these two core groups always payers and never payers, respectively. The
perfect compliance rate of 45 percent is presumably low, and therefore leaves space for potential behavioral
responses from non-compliant and partially-compliant neighbors.

2



Figure 1: Distribution of accounts per block

0
10

0
20

0
30

0
Fr

eq
ue

nc
y

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Accounts per block

Table 1: Descriptive statistics

Blocks Obs Mean SD ICC
pago todas 3982 68808 0.449 0.497 0.062
pago alguna 3982 68808 0.650 0.477 0.071
pago seis 3982 68808 0.572 0.495 0.073

3 Experimental Design

The experiment was run on the universe of residential dwellings present in the municipality in 2020.
Randomization took place in two stages (first at the block level and then at the account level). In the
first stage, we randomly assigned blocks to four groups with different intensity of treatment: pure control
blocks where no accounts are notified, blocks with 20% of the accounts treated, blocks with 50% of the
accounts treated, and blocks with 80% of the accounts treated. In the second stage, we randomly selected
accounts within the last three groups of blocks to receive the treatment letter.

Approximately 25,000 account holders who are billed monthly were sent a letter containing the treat-
ment messages. The letters were delivered between September 28th and October 7th, 2020, corresponding
to payments due in the October billing period of the same year (month 10) as well as past due debt (if
any). The outcomes of interest are fee payments (in levels, logs, and an indicator), overdue days, and
an indicator for whether neighbors sign up to digital billing. To study the total effect, we measure the
change in outcomes among those targeted by the intervention relative to the control group. To study
spillover effects, we analyze the behavior of non-targeted neighbors within treated blocks and test for
non-linearities based on the differential exposure of blocks to the communication campaign.

A potential third stage of the project would seek to invite neighbors to respond to a brief survey to
gauge the take-up of the experiment and also to understand the financial constraints and other behavioral
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factors that might affect their level of compliance.

3.1 Treatment assignment

Let ng indicate the number of units (accounts - cuentas) per group (block - cuadra) with g = 1, . . . , G and
let N = ∑

g ng be the total sample size. The group-level treatment indicator is denoted by Tg ∈ {0, 1, 2, 3}
with distribution P[Tg = t] = qt for t = 0, 1, 2, 3 where Tg = 0 indicates the pure control group, Tg = 1
indicates the groups with 20% treated, Tg = 2 indicates groups with 50% treated and Tg = 3 indicates
groups with 80% treated. The unit (account) treatment indicator is Dig ∈ {0, 1}. We have that:

P[Dig = 1|Tg = t] = pt =



0 if t = 0

0.2 if t = 1

0.5 if t = 2

0.8 if t = 3

.

There is a total of seven assignment cells of interest:

(Dig, Tg) =



(0, 0) pure controls

(0, 1) controls in 20% groups

(0, 2) controls in 50% groups

(0, 3) controls in 80% groups

(1, 1) treated in 20% groups

(1, 2) treated in 50% groups

(1, 3) treated in 80% groups

and the probabilities of each of these assignments are:

P[Dig = d, Tg = t] =



q0 for pure controls

0.8q1 for controls in 20% groups

0.5q2 for controls in 50% groups

0.2q3 for controls in 80% groups

0.2q1 for treated in 20% groups

0.5q2 for treated in 50% groups

0.8q3 for treated in 80% groups

3.2 Treatment effect parameters and estimators

Given an outcome Yig, our goal is to estimate:

θt = E[Yig|Dig = 0, Tg = t]− E[Yig|Dig = 0, Tg = 0]
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for t = 1, 2, 3, which can be seen as spillover effects on untreated units in groups with Tg = t compared
to pure controls, and

τt = E[Yig|Dig = 1, Tg = t]− E[Yig|Dig = 0, Tg = 0]

which are total effects on treated units in groups with Tg = t compared to pure controls. Note that the
direct effect of the treatment is not identified in this design because in principle there are no groups in
which only one person is treated.

The parameters {θt, τt}3t=1 can be estimated jointly through the following saturated regression:

Yig = α+
3∑
t=1

θt1(Tg = t)(1−Dig) +
3∑
t=1

τt1(Tg = t)Dig + εig

where we allow εig to be correlated within blocks and use a cluster-robust variance estimator. Note
also that since we will have access to panel data at the account-month level we could run a dynamic
difference-in-differences specification comparing Yig for treatment and control groups in every month m

before and after month m∗ when the intervention takes place (relative to month m∗ − 1). We will also
explore heterogenous affects for different cuts of the variables listed in Section 2. For example, an exercise
of interest consists of exploring non-linearities in the treatment effect depending on the baseline level of
compliance of the block. For example, to test whether the effect is stronger or weaker in blocks with a
higher share of always payers (defined with pre-intervention data).

3.3 Experimental design: choice of qt

The expected number of treated units / letters sent is

N1 = N(0.2q1 + 0.5q2 + 0.8q3)

On the other hand, since the assignments Tg = 1 and Tg = 3 are symmetric, it makes sense to have
q1 = q3. If the goal is to send L letters, the choice of qt should satisfy:

q0 + q1 + q2 + q3 = 1

N(0.2q1 + 0.5q2 + 0.8q3) = L

q1 = q3

Finally, to ensure that the variances of the estimators are similar across assignments, we need:

q2 = Rq3

where R depends on the intraclass correlation and the variance of the potential outcomes. See the
appendix for details. We assumed an intraclass correlation between potential outcomes of 0.1 (which
is slightly larger than the estimated ICC for the baseline data) and that the variances of the potential
outcomes are approximately equal (see the appendix for details).

Using the sample sizes from the baseline data and setting L = 25, 000 gives the probabilities shown
in Table 2. Table 3 shows the expected (approximate) sample sizes.
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Table 2: Assignment probabilities

Prob
q0 0.273
q1 0.282
q2 0.162
q3 0.282

Table 3: Approximate sample sizes

Blocks Control Obs Treated Obs
Tg = 0 1088 18808 0
Tg = 1 1124 15547 3886
Tg = 2 644 5565 5565
Tg = 3 1124 3886 15547
Total 3980 43806 24998

4 Power and minimum detectable effects

Figure 2 plots the power function for each estimator, using the following parameters:

• σ2(d, t) = 0.25 for all (d, t). This gives a conservative estimate because 0.25 is the upper bound for
the variance of a binary variable.

• ICC = 0.1 which is close to (but larger than) the estimated intraclass correlation of the baseline
outcome.

• The sample and group sizes given by the baseline data.

See the appendix for details on the power function formula. The power calculations give a minimum
detectable effect between 2.6 and 3.3 percentage points.

5 Simulations

In each simulation, we use the baseline outcome from June 2019 as the potential outcome for pure controls,
and construct the remaining potential outcomes adding the corresponding direct or spillover effects. See
the appendix for details. The results are shown in Table 4. The last parameter is set to zero to simulate
the probability of type I error.

The simulation results are in line with the ones from the analytical calculations in the previous section,
with slightly lower MDEs because some statistics such as the ICC are in fact lower in the sample. The
last row in the table confirms that the probability of incorrectly rejecting the null of no effect is around
5% as expected.
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Figure 2: Power functions
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Table 4: Simulation results

True value Prob(reject)
θ1 0.021 0.812
θ2 0.026 0.798
θ3 0.027 0.791
τ1 0.028 0.801
τ2 0.026 0.800
τ3 0.000 0.045

6 Balance Checks

We will run balance checks verifying comparability of the treatment and the control group in terms of
demographic and account-related characteristics in 2019. We will run Ordinary Least Squares regressions

Xig = α+ βDig + εig

where Xig is one of the account holder or dwelling characteristics listed in Section 2 and Dig is a dummy
variable equal to 1 if the taxpayer was assigned to a group that received the communication letter, and
equal to 0 otherwise. We will allow εig to be correlated within blocks and use cluster-robust standard
errors. Note that the balance should also hold when we run OLS regressions pooling the accounts from
the different groups of blocks and comparing treatment and control.
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Appendices

A Treatment assignment

For the simulations I assume (T1, T2, . . . , TG) are iid with distribution: P[Tg = t] = qt and the variable is
constructed as:

Tg = 1(q0 < Ug ≤ q0 + q1) + 21(q0 + q1 < Ug ≤ q0 + q1 + q2) + 31(Ug > q0 + q1 + q2)

with Ug ∼ Uniform(0, 1).
The individual treatment indicator is assigned according to the rule:

Dig = 1(U1
ig ≤ 0.2)1(Tg = 1) + 1(U2

ig ≤ 0.5)1(Tg = 2) + 1(U3
ig ≤ 0.8)1(Tg = 3)

where Ukig ∼ Uniform(0, 1) for k = 1, 2, 3, independent of each other.

B Formulas and derivations for power calculations

Estimators for each assignment (d, t) with t 6= 0 are defined as:

µ̂(d, t)− µ̂(0, 0) =
∑G
g=1

∑ng

i=1 Yig1ig(d, t)∑G
g=1

∑ng

i=1 1ig(d, t)
−

∑G
g=1

∑ng

i=1 Yig1ig(0, 0)∑G
g=1

∑ng

i=1 1ig(0, 0)

where 1ig(d, t) = 1(Dig = d, Tg = t). The variance of this estimator can be approximated by:

V (d, t) ≈ σ2(d, t)
Gn̄π(d, t)

ß
1 + ρdt,dt

π((d, t), (d, t))
π(d, t)

Å
n̄2
n̄
− 1
ã™

+ σ2(0, 0)
Gn̄π(0, 0)

ß
1 + ρ00,00

π((0, 0), (0, 0))
π(0, 0)

Å
n̄2
n̄
− 1
ã™

where n̄ = ∑G
g=1 ng/G, n̄2 = ∑G

g=1 n
2
g/G, π(d, t) = P[Dig = d, Tg = t], π((d, t), (d, t)) = P[Dig = d,Djg =

d, Tg = t] and ρdt,dt is the intraclass correlation between potential outcomes, cor(Yig(d, t), Yjg(d, t)). In
this case we have that:

π(d, t) = P[Dig = d, Tg = t] = P[Dig = d|Tg = t]P[Tg = t] = pdt (1− pt)1−dqt

π(0, 0) = q0

π((d, t), (d, t)) = P[Dig = d,Djg = d|Tg = t]P[Tg = t] = p2d
t (1− pt)2(1−d)qt

π((0, 0), (0, 0)) = q0
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and thus

π((d, t), (d, t))
π(d, t) = pdt (1− pt)1−d

π((0, 0), (0, 0))
π(0, 0) = 1

The variance formula is then:

V (d, t) ≈ σ2(d, t)
Gn̄pdt (1− pt)1−dqt

ß
1 + ρdt,dtp

d
t (1− pt)1−d

Å
n̄2
n̄
− 1
ã™

+ σ2(0, 0)
Gn̄q0

ß
1 + ρ00,00

Å
n̄2
n̄
− 1
ã™

.

Given this variance, the power function is given by:

β(θ) = 1− Φ
Ç

θ√
V (d, t)

+ z1−α/2

å
+ Φ
Ç

θ√
V (d, t)

− z1−α/2

å
.

B.1 Choice of qt

The “hardest” effect to estimate correspond to the assignments (d, t) = (1, 1), i.e. treated in 20% groups,
and (d, t) = (0, 3), i.e. controls in 80% groups. To ensure the variance of these estimators is similar to
the variance of the (d, t) = (0, 2) estimator, and using that q1 = q3, we need:

σ2(0, 3)
0.2q3

ß
1 + 0.2ρ03,03

Å
n̄2
n̄
− 1
ã™

= σ2(0, 2)
0.5q2

ß
1 + 0.5ρ02,02

Å
n̄2
n̄
− 1
ã™

.

We will assume that all the variances are the same, σ2(0, 3) ≈ σ2(0, 2) = σ2 and that all the intraclass
correlations are the same and equal to 0.1, which is larger than the one estimated for the baseline data.
Then we have that after some simplifications:

q2

ß
1 + 0.02

Å
n̄2
n̄
− 1
ã™

= 0.4q3

ß
1 + 0.05

Å
n̄2
n̄
− 1
ã™

.

C DGP for simulations

The simulations rely on seven potential outcomes Yig(d, t) for d = 0, 1 and t = 0, 1, 2, 3. Based on the
baseline June 2019 outcome Y base

ig , the potential outcomes are constructed in the following way:

Yig(0, 0) = Y base
ig

Yig(d, t) = 1(Udt ≤ cdt)(1− Yig(0, 0)) + 1(Ũdt ≤ cdt + k)Yig(0, 0)
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for (d, t) 6= (0, 0), where Udt and Ũdt are independent uniforms. According to this model,

E[Yig(0, 0)] = µ0

E[Yig(d, t)] = cdt + µ0k

Cov(Yig(0, 0), Yig(d, t)) = kµ0(1− µ0)

Therefore, we can set:
c0t = θt + µ0(1− k), c1t = τt + µ0(1− k)

and
k = ρ

µ0(1− µ0)
where ρ is some specified level for the covariance.

C.1 Model parameters

µ0 = Ȳ base ≈ 0.568

ρ = 0.2

A value of ρ = 0.2 implies a correlation between Yig(0, 0) and Yig(d, t) between 0.6 and 0.8. The implied
intraclass correlation for all potential outcomes is approximately ICC = 0.05.

D Subgroup analysis and stratification on group size

For the subgroup analysis, we divide the blocks into three categories:

• Small: group size below 15,

• Medium: group size between 16 and 25,

• Large: group size larger than 25.

Table 5 shows descriptive statistics for the outcomes of interest in each group size category. Table 6 shows
that the assignment probabilities for each subgroup are very similar. The sample sizes in each subgroup
are shown in Table 7.

Finally, Figure 3 plots the power functions for the three group size categories and for the assignment
(0, 3). Due to the smaller sample sizes, the MDEs are larger.
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Table 5: Descriptive statistics

Blocks Obs Mean SD ICC
Small

pago todas 2076 23494 0.418 0.493 0.070
pago alguna 2076 23494 0.618 0.486 0.079
pago seis 2076 23494 0.539 0.499 0.081

Medium
pago todas 1310 25665 0.441 0.496 0.060
pago alguna 1310 25665 0.641 0.480 0.065
pago seis 1310 25665 0.562 0.496 0.068

Large
pago todas 596 19649 0.497 0.500 0.046
pago alguna 596 19649 0.700 0.458 0.049
pago seis 596 19649 0.623 0.485 0.051

Table 6: Assignment probabilities

Small Medium Large
q0 0.273 0.273 0.273
q1 0.282 0.282 0.282
q2 0.162 0.162 0.162
q3 0.282 0.282 0.282

Table 7: Sample sizes

Blocks Control Obs Treated Obs
Small
Tg = 0 567 6421 0
Tg = 1 586 5308 1327
Tg = 2 335 1900 1900
Tg = 3 586 1327 5308
Total 2074 14956 8535

Medium
Tg = 0 358 7015 0
Tg = 1 370 5799 1449
Tg = 2 211 2075 2075
Tg = 3 370 1449 5799
Total 1309 16338 9323

Large
Tg = 0 162 5370 0
Tg = 1 168 4439 1109
Tg = 2 96 1589 1589
Tg = 3 168 1109 4439
Total 594 12507 7137
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Figure 3: Power functions
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(b) (d, t) = (0, 3), medium groups
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(c) (d, t) = (0, 3), large groups
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