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1 Preliminary

This documents details the core hypotheses we seek to test. For details on the experimental design,

see the document ”Experiment description”. Unless otherwise noted, we employ OLS regressions

and test our hypotheses using two sided t-tests. Whenever we include multiple observations from

the same subject, we cluster standard errors at the subject level. We will refer to coefficients as

statistically significant if p < 0.05.

2 Part I: Mao pairs

Variable construction: Our analysis follows that of Dertwinkel-Kalt and Köster (2019). We first

construct the variable shift. shift is equal to one if a given subject chose the less skewed option

for the maximal positive correlation but shifted to the more skewed option for maximal negative

correlation. For the reverse choice pattern, shift = −1. Finally, shift = 0 when a subject chose

the same lottery for both correlation structures.

In a first step, we aim to replicate the results of Dertwinkel-Kalt and Köster (2019), using data

from the treatment CEESE. We run the following regression:

shifti,t = c+ βasymmetrici,t + εi,t (1)

where i denotes a given subject and t a given Mao pair. The variable asymmetrici,t is a dummy

that is equal to zero if the Mao pair is more symmetric (S=0.6) and one if it is more asymmetric

(S=2.7). c is a constant and εi,t is an iid error term.

Hypothesis 1 concerns the constant, c. We test whether it is significantly different from zero.

This corresponds to Dertwinkel-Kalt and Köster (2019)’s hypothesis 3a). We run an equivalent

test on β. This corresponds to Dertwinkel-Kalt and Köster (2019)’s hypothesis 3b). We expect to

find that c is positive and β is negative, both statistically significant.
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In a second step, we repeat the same procedure for the treatment CEO. We expect the coeffi-

cients to be reduced in magnitude. They might lose statistical significance.

In a third step, we run the following regression:

shifti,t = c+ β1asymmetrici,t + β2CEESEi + β3asymmetrici,t ∗ CEESEi + εi,t (2)

where CEESEi is a dummy that is equal to one if subject i is in treatment CEESE and zero

otherwise. Since CEO is the omitted category, the constant c will be an estimate of the shift in

choices due to correlation effect. β2 will be an estimate of the ESE. We can thus cleanly separate

the effect of correlation structure and ESE (as long as they are additively separable). β1 captures

differences in shift for the different levels of symmetry of the Mao pairs that are due to correlation

effects, and β3 estimates these differences which are due to ESE.

If only correlation effects are at play, we expect c and β1 to be significantly different from zero

(and to be positive and negative respectively), while β2 and β3 are not statistically significantly

different from zero. If only ESE are at play, we should see the reverse. Finally, if both ESE and

correlation effects are present, all coefficients should be significant.

3 Part II: Common consequence Allais Paradox

3.1 Occurrence of the Allais paradox under different correlation struc-

tures

Variable construction: We classify choices into AA, BB, AB, and BA, where the first letter

indicates lottery choice for z = al, and the second one for z = b. Lottery A denotes the more risky

option. AA and BB are in line with EUT, AB is in line with the Allais paradox, BA is reverse

Allais paradox (interpreted as decision noise). We construct the dependent variable analogous to

the way for the Dertwinkel-Kalt and Köster (2019) tasks. shift is defined such that it is zero if a

choice patterns was classified as AA or BB, shift = 1 for AB and shift = −1 for BA.

Regressing shift on a constant (clustering SE at the subject level) allows to test whether the

Allais paradox is triggered for a given presentation and correlation structure, net of decision noise.

In the treatment CEESE, For positive correlation, we expect this constant not to be significantly

different from zero. We expect a positive and significant constant when lotteries are independent.

This replicates existing findings (see for instance Frydman and Mormann (2018) and Bruhin et al.

(2018)). For choices in the treatment CEO, we expect the constant to be non-significant for the

the maximally positive correlation structure. For the case in which lotteries are independent but

ESE are controlled for, the constant will yield an estimate of the effects due to correlation effects,

when ESE are controlled for.
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3.2 Can the Allais paradox be turned on and off by changing the corre-

lation structure?

In a second step, we aim to disentangle ESE from correlation effects. Note that testing whether

changing the correlation structure changes the frequency of Allais compatible choices comes down

to testing whether changes in the correlation structure changes choices for z = al. This is because

the correlation structure cannot change when z = b.

Variable construction: We therefore construct the following variable. shift is defined such

that it is zero if a given subject chose the same lottery regardless of the correlation structure.

shift = 1 if a given subject chose lottery A (the riskier lottery) for z = al when the lotteries are

independent and B (the safer lottery) when they are maximally positively correlated. shift = −1

for the reverse pattern.

We run the following regression:

shifti,t = c+ βCEESEi,t + εi,t (3)

c estimates the fraction of choice pairs exhibiting the Allais paradox due to changing the cor-

relation structure from maximal positive to independent, when controlling for ESE. β estimates

the fraction of Allais compatible choice pairs due to ESE in the treatment CEESE. Note that

the number of events is not the same in CEESE and CEO when lotteries are independent. How-

ever, according to salience theory, this does not matter, meaning that correlation effects should be

equivalent in both treatments. Therefore β is a valid estimate for the fraction of Allais compatible

choice pairs due to ESE in the treatment CEESE. We expect β to be positive and significant. We

expect c to be small and that it might not reach statistical significance.

4 Part III: Dominant and Dominated Lotteries

Salience Theory predicts that subjects choose the dominant lottery in both cases, that is when the

domination is state-wise as well in as in the case of FOSD. A salient thinker will always choose a

state-wise dominant option. Changing the correlation structure from positive to negative should

only reinforce these preferences. However, the positive correlation structure makes it easier for

subjects to note that one lottery is superior. We therefore predict that subjects will choose the

dominated option less often when the correlation structure is positive than when it is negative.

To test this, to stick with our previous approach, we construct a variable shifti,t, that is equal

to 1 if a subject i chose the dominant lottery for the choice pair t for the negative correlation

structure (FOSD) but not for the positive correlation structure (state-wise dominant). For the

reverse pattern, shift is equal to -1. If no change occurs when the correlation structure is changed,

shift = 0. We then regress shifti,t on a constant and test whether this constant is equal to zero.

shifti,t = c+ εi,t (4)
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We expect c to be negative and statistically significant. A shift towards the dominated lottery

due to changing the correlation from maximally positive to maximally negative can be interpreted

as evidence against salience theory.

5 Part IV and V: Same Marginal Lotteries

We construct a dummy skewi,t that is equal to one if subject i chose the lottery with the higher

relative skewness for choice t. We also construct a dummy that is equal to 1 if subjects received

immediate feedback on a given choice. We then run the following regression

skewi,t = c+ βfeedbacki,t + εi,t (5)

By testing whether c is equal to 0.5 (the random choice benchmark), we test for preferences for

positive relative skewness when subjects do not receive immediate feedback. We also test if β is

different from zero. If it is positive and significant, this will be interpreted as evidence in favor of

regret theory.

To further test for differences in relative skewness seeking due to feedback, we calculate, for

each subject i, the average of the variable skewi,t. We call this the relative skewness seeking

score (RSSS). We compute the RSSS both for choices with and without immediate feedback. The

score ranges from 0 to 1. We then test for differences in the distribution of relative skewness

seeking scores with and without feedback. To this end, we perform a Wilcoxon signed-rank test,

at p = 0.05.

6 Further Analysis

6.1 Does relative skewness seeking predict skewness seeking?

We use the fraction of choices of the more positively skewed option part I (regardless of the

correlation structure) as a measure for individual’s absolute skewness seeking. We call this the

skewness seeking score (SSS). (We consider part I choices because the Mao pairs control for EV

and variance). We consider choices from both treatments.

If there are differences in choices due to feedback, we use the RSSS for choices without feedback.

If there are no differences due to feedback, we use the average of the RSS for the case with and

without feedback.

We then regress the score for skewness seeking on individuals score for relative skewness seeking.

We test if β is statistically significant. (linear regression, robust standard errors, t-test at p = 0.05)

SSSi = c+ βRSSSi + εi (6)

6.2 Robustness Check

We will check the robustness of our findings to excluding subjects who
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• failed a comprehension test at the beginning of the experiment at least three times before

succeeding.

• chose a state-wise dominated lottery.
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