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1 Introduction

The goal of this experiment is to study Kőszegi and Rabin (2006)’s (KR) expectations-based

reference dependence model in the domain of effort provision, paying careful attention to

the issue of heterogeneity in gain-loss attitudes. Existing tests of the KR model in this

domain typically elicit real effort according to two payment schemes: subjects are either

paid a piece-rate wage per task, or earn a fixed fee for all of the tasks they complete

(Abeler et al., 2011; Gneezy et al., 2017). Random manipulations of the fixed fee (from

low to high) yields the key comparative static prediction these experiments aim to test.

Under the assumption of loss aversion – that agents dislike losses more than commensurate

gains – the KR model predicts that a larger probability on the high fixed fee should shift

the agent’s stochastic reference point up, thus inducing more effort. However, the results

of the prior studies were inconclusive, with Abeler et al. (2011) finding strong support for

KR but Gneezy et al. (2017) finding null effects.

One potential explanation lies in heterogeneity of gain-loss types; recent work by Chapman

et al. (2018) suggests that, in a sample representative of the U.S. population, roughly 50%

of the population is gain loving – enjoying gains more than commensurate losses. For

these types, we show that the KR comparative static prediction reverses in this context so

that a larger chance of the higher fixed fee is predicted to lead to lower effort provision.

Moreover, new research by Goette et al. (2018) has shown that, due to nonlinearities in

the aggregation of predicted treatment effects, aggregate tests of KR treatment effects are

severely underpowered. In light of this, we propose a pre-analysis plan for an experiment

designed to test the KR model in the real effort domain with an eye towards the issues

introduced by heterogeneity.
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2 Experiment Design

After subjects enter the lab, consent to be part of the experiment, and read instructions,

they will perform a series of sample tasks – transcribing greek letters as shown in Figure

1, borrowed from Augenblick and Rabin (2018) – in order to get a sense of how many they

might be willing to do. Our experimental protocol follows the existing literature closely,

specifically adopting a version of Gneezy et al., 2017 (described in more detail below).

Importantly, because we are interested in the testing the interaction between treatment

and gain-loss preferences, our design requires two stages – the first designed to measure

gain-loss attitudes and the second to administer the treatment.

Following Goette et al. (2018), we plan to structurally measure gain-loss attitudes in the

real effort domain in Stage 1, asking participants how many tasks they are willing to do at

various wages. These pre-selected wages are common across all subjects, and come from

our fixed set of 30 rates. Similar to Augenblick and Rabin (2018), we select (expected)

wages from between $0.05/task and $0.3/task (an hourly wage rate between approximately

$4.00 and $26.00, according to their average time of completion); this range was able to

generate sufficient variation in exerted effort to identify a reasonable cost of effort function

in their study (see Figure 5). To ensure incentive compatibility, we remind subjects that

each choice they make is equally likely to be selected as the decision-that-counts. They

are explicitly reminded several times throughout the experiment that they may be asked

complete the number of tasks they indicate.

The fixed set of 30 wages is made up of two distinct types of rates: deterministic and

stochastic. As a simple example, imagine two contracts, one offering 20 cents per task

completed (deterministic) and another offering a 50% chance of 30 cents per task and a

50% chance of 10 cents per task (stochastic – a mean-preserving spread of the first wage).

We rely on these two types of wages to jointly identify a cost of effort function and gain-loss

preferences for each individual. Intuitively, applying the KR model equipped with Choice-

Acclimating Personal Equilibrium (CPE), the agent optimizes by choosing the number
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Figure 1: Greek Letter Transcription Task

of tasks that equates marginal costs to marginal benefits – which is either deterministic

or stochastic depending on the wage. By offering a menu of wages (with stochastic and

deterministic rates on separate pages) and comparing the decisions, we can estimate the

gain-loss attitude parameters as well as parameters for a cost of effort function. The

mathematical details are described in a later section. These decisions made in stage 1 of

our study will be used to compute estimates of gain-loss attitudes and cost of effort.

After the subjects make these choices, we offer each subject our two main treatment con-

ditions. Following Gneezy et al. (2017), we ask subjects how many tasks they would like

to complete when their payment is a 50% chance they will earn a piece-rate of 20 cents

per task, a q% chance they will earn a fixed fee of $0, and a p% chance of $20 regardless of

the number of tasks they complete. By varying p, q between (0.45, 0.05) and (0.05, 0.45),

we create our low and high probability treatment conditions for the high fixed fee. We will

refer to p = 0.45 as Treatment and p = 0.05 as Baseline, so that a Treatment Effect is the

difference between these two. Note that subjects will see each of the treatment conditions

separately and in a randomized order, so that we are able to perform both between and

within subject analysis.

Once these critical choices for our experiment have been made, we present subjects with

Multiple Price Lists (MPLs), a commonly used protocol to estimate gain-loss preferences
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in the monetary risk domain (Sprenger, 2015). More specifically, we implement two Prob-

ability Equivalent tasks through MPLs, in which we hold fixed a sure payoff of $5 [$0]

as Option B and offer the gamble (p, $10; 0) [or (p, $3;−3.5)] for p ranging from 0% to

100% in increments of 5% as Option A. Assuming subjects have standard preferences over

money at both extremes – e.g. they prefer $5 for sure to a 0% chance of $10 and prefer a

100% chance of $10 to $5 for sure – the p at which they switch from Option B to Option

A informs us about their gain-loss preferences. As is standard when using KR to measure

gain-loss attitudes in this context, we must assume that the fixed option (here, Option B)

acts as the reference point.1

These measurements are intended to shed light on the relationships between gain-loss pref-

erences across different contexts, and will thus be incentivized. Although we are interested

in exploring whether these gain-loss measurements are predictive of our heterogenous treat-

ment effects in the effort domain, we recognize that we are potentially underpowered to

test this hypothesis depending on the correlation between the measurements in each do-

main. For this reason, analysis from these measures will be purposefully separated from

our main analysis using the stage 1 measurements of gain-loss preferences. Despite coning

after the effort elicitation, subjects are made aware of this separate MPL task in the first

set of instructions and are informed that each decision across the Stage 1, Treatment, and

MPL tasks are equally likely to be the decision-that-counts. 2 We opt to implement these

MPLs at the end of the effort choices so as to not affect any of the effort responses, which

are the core of our experiment.

Finally, we randomly select the decision-that-counts for each subject. Once they have

learned of the selected decision, regardless of which decision or how many tasks were

selected, each subject will complete a mandated 10 transcriptions. If the decision is from

one of the MPLs, the computer will generate a random number and determine the outcome

of the lottery, and the subject will receive their payment upon completion of the mandatory
1We describe how these preferences in a later section, see Sprenger (2015) for additional details.
2As described in the following paragraph, all subjects will be asked to complete a mandatory 10 tasks

regardless of the nature of the decision-that-counts.
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tasks. If one of the effort decisions is selected, subjects first complete the mandatory 10

tasks and then the additional number they indicated in that decision; if the relevant rate

is stochastic, we do not resolve the uncertainty in wages until after the subjects have

completed all of the additional tasks.3 This does lead to differential levels of uncertainty

when completing both the mandatory task and the additional tasks; those with MPL

decisions know their payment, those with deterministic wages know their payment, but

those with stochastic wages do not. This is intentional, and aimed to mitigate the risk

that subjects strategically indicate a large amount of tasks at a highly uncertain wage of

(0.5, $0.00; 0.5, $0.60) with the intention of leaving if the rate is determined to be $0.00.4

For each task, subjects have 3 chances to enter the correct transcription – if they fail all

three attempts, they are simply presented a new set of greek characters and their tally

does not increase toward their goal. After all the tasks are completed, participants are

presented a series of Raven’s matrices (John Raven and Jean Raven, 2003) to measure

cognitive ability, followed a demographic survey (gender, major, age, parental income, risk

attitudes). Finally, we resolve any remaining wage lotteries, and pay subjects privately.

3 Hypotheses

Our hypothesis of interest is that subjects previously measured to be loss averse will respond

to the treatment in the directionally opposite way compared to those measured as gain

loving. Specifically, when the probability of receiving the high fee increases (p goes from
3They will have been informed of this in the instructions.
4When considering the implications of this asymmetric uncertainty, we weighed the tradeoffs between

the current approach and alternatives – most obviously resolving all uncertainty prior to the mandatory
tasks. The cost of our asymmetric uncertainty approach is that one could argue we misinterpret selections
of 0 effort under stochastic wages as loss aversion when in fact it stems from the desire to resolve uncertainty.
Because the duration of the experiment is relatively short (30-120 minutes depending on the decision-that-
counts), we are not as worried about this potential confound. Moreover, we can compare behavior under
these wages (where uncertainty resolution is delayed by a brief amount) to behavior in the MPLs, where we
have stochastic earnings but no delay in resolution of uncertainty; although this comparison may be hard
to interpret because there is no established correlation across the two measures of gain-loss preferences,
the existence of loss averse subjects in the MPL task helps verify that the choices under stochastic wages
meaningfully reflect gain-loss attitudes.
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0.05 to 0.45), we predict (according to the KR model outline below) that loss averse subjects

will increase their effort on average while gain loving subjects will decrease their effort on

average. This hypothesis follows directly from the KR model when using the CPE solution

concept. Letting w be the piece rate wage, e stand for effort (number of tasks), L,H > L

the fixed fees, and fixing 1− p− q = 0.5, we can write the CPE utils of an agent expecting

payment (p,H; q, L; 1− p− q, w) as:

U((p,H; q, L; 0.5, we)|(p,H; q, L; 0.5, we)) =
pH + qL+ 0.5we+ η(1− λ) [pq(H − L) + 0.5p(H − we) + 0.5q(L− we)]− c(e) we < L < H

pH + qL+ 0.5we+ η(1− λ) [pq(H − L) + 0.5p(H − we) + 0.5q(we− L)]− c(e) L < we < H

pH + qL+ 0.5we+ η(1− λ) [pq(H − L) + 0.5p(we−H) + 0.5q(we− L)]− c(e) L < H < we.

Following the math in the appendix of Gneezy et al. (2017), we study the effects of an

increase in p by considering each of the three cases and signing the derivative ∂e∗

∂p
|1−p−q=0.5.

3.0.1 Case 1: we < L < H

Assume first that we < L < H, so that the considered level of effort falls below the low

fixed fee.The first order condition yielding optimal effort is

0.5w [1 + (p+ q)η(λ− 1)] = c′(e),

and because c′(e) is continuous and differentiable, c′−1(e) exists and the optimal e∗ is

e∗ = c′−1 (0.5w [1 + (p+ q)η(λ− 1)]) .

7



Turning back to ∂e∗

∂p
|1−p−q=0.5, let p + q = P̄ = 0.5 – since changes in p must leave p + q

constant, we have that ∂e∗

∂p
|1−p−q=0.5 = 0 in this case.5

3.0.2 Case 2: L < we < H,

Next, assume that L < we < H, so that the considered level of effort falls between the low

and high fixed fees. Here, solving for optimal effort results in a first order condition of

0.5w [1 + (p− q)η(λ− 1)] = c′(e).

Defining P̄ = p+ q = 0.5 and p− q = 2p− P̄ = 2p− 0.5, we can sign the partial derivative

as

∂e∗

∂p
|1−p−q=0.5 = (c′−1)′(0.5w[1 + (2p− 0.5)η(λ− 1)]) ∗ η(λ− 1)w.

By the inverse function theorem, (c′−1)′(0.5w[1 + (2p− 0.5)η(λ− 1)]) ∗ η(λ− 1)w = 1
c′′(e∗)

where 0.5w[1 + (2p− 0.5)η(λ− 1)] = c′(e∗). Thus,

∂e∗

∂p
|1−p−q=0.5 =

η(λ− 1)w

c′′(e∗)

5For a more concrete example, consider the cost function used in Augenblick and Rabin (2018): ci(ei) =
1
αγi

(ei + 10)γi . In this case, we can solve for

e∗ = (α0.5w [1 + (p+ q)η(λ− 1)])
1

γ−1 .

The ratio of effort under two different treatment conditions, P ′ and Q′ is then

e∗1 + 10

e∗2 + 10
=

(α0.5w)
1

γ−1 (1 + (P ′)η(λ− 1))
1

γ−1

(α0.5w)
1

γ−1 (1 + (Q′)η(λ− 1))
1

γ−1

,

so that the α terms disappear.
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and by the assumed convexity of c(·), we know c′′(e∗) > 0 so that – fixing η = 1 (any

positive number would also hold)

λ > 1 =⇒ ∂e∗

∂p
|1−p−q=0.5 > 0

λ < 1 =⇒ ∂e∗

∂p
|1−p−q=0.5 < 0.

That is to say, loss averse agents are predicted to increase their effort whereas gain loving

subjects (λ < 1) should decrease their effort in this case as the probability of the high fee

(p) increases.

3.0.3 Case 3: L < H < we

Lastly, we can consider the case when L < H < we, so that the considered effort is above

the high fixed fee. Again, we examine the first order condition given by

0.5w [1− (p+ q)η(λ− 1)] = c′(e),

and

e∗ = c′−1(0.5w[1− (p+ q)η(λ− 1)]),

yielding ∂e∗

∂p
|1−p−q=0.5 = 0.

3.0.4 Combined Predictions

Thus, our predicted treatment effects of increasing the probability of the high fixed fee on

effort will go in opposite directions for gain loving and loss averse types when L < we < H,

and should otherwise be zero. The range in which the treatment bites is informative for

our design – by setting L = 0, H = 20, w = 0.20 with effort choices e ∈ [0, 100], we
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ensure that our two conditions have the potential to generate predicted differences for all

considered effort levels. Moreover, the derived sensitivity of treatment effects on λ suggest

it is important to properly measure λ using the preliminary wage menus, which we describe

next.

4 Structural Estimation

4.1 Stage 1 Data

As previously mentioned, the decisions made in Stage 1 of our experiment will be used

to estimate the gain-loss parameters for individual participants; specifically, we build a

structural model assuming that agents behave according to KR’s CPE concept and estimate

the parameters of interest (cost of effort function, gain-loss attitudes) using MLE. Under

CPE, the agent facing a deterministic piece-rate maximizes the following utility function:

u(wei|wei) = wei − ci(ei),

so that the optimal effort choice e∗i ((1, w)) satisfies the first order condition w = c′i(ei). Note

that this is the same as a neoclassical agent, and is clearly independent of the gain-loss

attitude, λ. As a result, we can trace out the cost of effort function by offering a number

of different deterministic wages wj and eliciting the agent’s optimal effort given the wage.

In choosing a functional form, we follow Augenblick and Rabin (2018) and assume that

ci(ei) = 1
αγi

(ei + 10)γi , where 10 represents the required number of tasks that all subjects

must complete in order to receive their completion fee, regardless of how many they choose
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to work at the various rates (0-100 is the range).6 Thus, the marginal consideration is

1

α
(ei + 10)(γi−1) = w.

By introducing stochastic piece-rates, we are able to identify the gain-loss parameter λi

as we vary the wages. To see this, consider the piece-rate (0.5, wl;wh), (wh > wl), which

represents a contract under which the agent exerts effort ei knowing that with 50% chance,

they will earn either ei×wl or ei×wh. The associated CPE utils for such an effort choice,

ei, is then

0.5wlei + 0.5whei − 0.25η(λi − 1)(whei − wlei)− ci(ei),

where ci(ei) is as described above. The optimal effort choice under this wage structure, e∗i ,

must then satisfy the first order condition

0.5wl + 0.5wh − 0.25η(λi − 1)(wh − wl) =
1

α
(ei + 10)γi−1.

Following standard practice when estimating λ in the KR06 model, we fix η = 1.

Using the variation in both deterministic and stochastic wages, as well as the functional

form assumptions, we estimate individual level parameters (α̂, γ̂i, λ̂i) using standard MLE

methods. Let e∗i be the optimal level of effort for an agent facing the wage bundleW , which

solves the first order conditions described in the prior sections (depending on whether W

is deterministic or stochastic).7 As in Augenblick and Rabin (2018), assume that the

experimentally observed level of effort is distributed around e∗i with a Normal(0, σ) noise
6Quoting from Augenblick and Rabin (2018), “ The parameter α is necessary and represents the ex-

change rate between effort and the payment amount. If instead ci(ei) = 1
γi
(e+ 10)γi , a requirement such

as linear marginal costs (which necessitates γi = 2), would also imply that the marginal cost of ei tasks is
exactly ei monetary units, regardless of the task type or the payment currency.”

7For deterministic wages, e∗i = (αw)
1

γi−1 − 10; for stochastic wages,

e∗i = (α(0.5wl + 0.5wh − 0.25η(λi − 1)(wh − wl))
1

γi−1 − 10.

11



term, ε. Then we have the likelihood of observing effort ei:

L(ei) = φ(
e∗i − ei
σ

),

where φ is the pdf of a standard normal random variable.8

However, because of the imposed limitations on task choices (that they fall within 0 and 100

tasks), we can adapt the typical normal MLE using a Tobit correction to account for the

fact that the choice of a corner solution may not satisfy the standard tangency conditions

of the utility maximization problems. The resulting, corrected likelihood of observing ei is

Ltobit(ei) = 1(0 < ei < 100)φ(
e∗i − ei
σ

) + 1(ei = 100)Φ(
e∗i − 100

σ
) + 1(ei = 0)(1− Φ(

e∗i
σ

)).

To compute the estimates, we follow standard protocol by searching for the parameters that

optimize the sum over the log-likelihoods. Note that these methods are not guaranteed

to converge for every subject, particularly if the subject’s choices display no variation

across the wages, or appear inconsistent according to our KR specification. As a result, we

anticipate needing to drop a small fraction of our population. This is taken into account

and further described in our later Power Calculations section.

We also consider other likelihood formulations, eyeing different computational methods

to identify the individual parameters. In particular, estimation using Hamiltonian Monte

Carlo from rstan (Stan Development Team, 2020) would follow much the same procedure

but under a Bayesian framework, wherein we specify additional priors on the distributions

of our parameters.9

8Note that there are important interactions between the CPE assumption and the cost of effort as-
sumption. In particular, λ > 3 is ruled out under CPE since it has unrealistic implications – including
violations of First Order Stochastic Dominance (see Masatlioglu and Raymond (2016) for more details).
If we did not rule this out, we would have computational issues in our estimation as λ ≥ 3 produces NA
values (root of a negative) unless γ = 2.

9Priors would come from work in Goette et al. (2018), under the assumption that λ is LogNormally
distributed in the population.
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Figure 2: First Stage Effort by Wage Price represents the wage: it can either be Fixed
(piece rate), MPS Small (a stochastic wage with EV=Price) if the spread is less than $0.1
around the mean, or MPS BIG if the spread is ≥$0.1. This plot was created with fixed
parameter values of γ = 2.138, α = 724, λ = 2 for loss averse and λ = 0.5 for gain lovers.
In the paper, we will aggregate all those classified as gain loving or loss averse, and take
the mean task choice at each expected wage.

These estimates in hand, we can generate something like Figure 2 to depict the differences

in first stage behavior between gain-lovers and loss averse individuals. Specifically, the

curves plot out the way the gain-loss attitudes interact with wage uncertainty in relation

to the number of tasks individuals are willing to complete for a given Expected Wage.

4.2 Structural Estimation: MPLs

Following Sprenger (2015), we briefly outline the process by which we estimate gain-loss

preference parameters from choices in the MPLs. Unlike the prior sections in which we
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discussed choices in the framework of CPE, we require a distinct equilibrium concept known

as Personal Equilibrium (PE) to identify λi in these tasks.

Let r represent the fixed amount, and F (p, x1;x2) represent the p-gamble over x1 > x2.

Because r > x2 is the fixed decision element, we assume that subjects prefer the fixed

amount to the 0% gamble; similarly, with x1 > r we assume that subjects prefer the 100%

gamble to r. However, for a specific p, subjects will choose by comparing the utility of the

fixed amount, U(r|r) = r and the utility of the p-gamble,

U(F |r) = p[x1 + η(x1 − r)] + (1− p)[x2 + ηλi(x2 − r)].

Call p∗i the particular decision at which they switch so that U(F ∗|r) = U(r|r). Given the

observed p∗i , we solve

r = p∗i [x1 + η(x1 − r)] + (1− p∗i )[x2 + ηλi(xw − r)]

λ̂i =
p∗i (x1 + η(x1 − r)) + (1− p∗i )x2 − r

(1− p∗i )η(r − x2)
.

Typically, we set x2 = 0 for convenience, which yields

λ̂i =
p∗i (x1 + η(x1 − r))− r

(1− p∗i )ηr
.

We may also use the Bayesian approach to model both the population distribution as well

as the individual λi. In particular, we structure our estimator assuming Logit Choice,

where individuals compare the CPE KR utils of options A and B in each row of the MPL,

and choose with logit noise. We can then model the decision to choose A as coming from

a Bernoulli(p), where p is the inverse logit of the difference in KR CPE utils between

options A and B – itself a function of the MPL parameters and λi.
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5 Analysis Plan

In order to test our between-subject hypothesis that loss averse and gain loving agents react

differently to our treatment of increasing the fixed payment, we run a standard differences-

in-differences design using our estimated value of the gain-loss parameter (λi), a treatment

indicator for the high probability of fixed payment choice (0.5, we; 0.45, 20; 0.05, 0), as well

as an interaction between the treatment indicator and the gain-loss parameter:

ei = β0 + β1 × λi + β2 × Treatmenti + β3(Treatment× λi) + εi.

The differences-in-differences regression allows us to easily retrieve the statistical signifi-

cance of our coefficient of interest, the interaction of the gain-loss measure and treatment

indicator (null hypothesis that β3 = 0). We will also run the following regressions to test

whether there are treatment effects in the predicted direction within the gain-loss types:

ei = γ0 + γ1,ci × Treatmenti + νi,

for ci ∈ {LA,LN,GL}. The simple t-test on γ1,ci provides a test of the aforementioned com-

parative static predictions – which the theory suggests should result in γ̂1,LA > 0, γ̂1,GL <

0, γ̂1,LN = 0.

6 Power Calculations

6.1 Approach 1: Perfect Recovery

To get a sense of the number of observations required for adequate power, we simulate

treatment effects by bootstrapping λi, α, γi values based on existing experimental evi-

dence. Specifically, we draw λi from the lognormal distribution estimated from data in

Goette et al. (2018) (λi ∼ lognorm(meanlog = 0.17, sdlog =
√

0.29)), from which 38%
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are categorized as gain loving and 62% as loss averse. For the cost of effort, we use the

individual structural estimates from the identical task computed by Augenblick and Rabin

(2018) (Table 2) – drawing the requisite number of observations for the cost curvature with

γi ∼ N (2.138, 0.6192) and α fixed at 724.10 We draw 10,000 observations using the param-

eters described above and, for each set, we solve for the optimal Stage 2 effort (restricted

between 0-100) by finding the level of effort that maximizes CPE utils given the sample

parameters. Then, we run the differences-in-differences specification to get a sense of the

magnitude of these theoretical treatment effects – presenting the results in Table 1.

Table 1: Simulated Differences in
Differences Results

(AR18) (Aggregate)
Effort Choice Effort Choice

Constant 63.68 46.70
(1.207) (0.608)

λ -12.48
(0.770)

Treatment -12.42 5.14
(1.717) (0.863)

λ× Treatment 12.90
(1.102)

Observations 10000 10000
R2 0.028 0.00

Notes: Notes: OLS regression with robust standard er-
rors in parentheses. AR18 represents the base simulation
results, using Augenblick and Rabin (2018)’s estimated
parameters. Aggregate represents the regression of effort
on a constant and a treatment indicator (over all gain-
loss types). Thus, the constant in column 3 represents
the average number of tasks chosen when facing the low
condition, and the treatment coefficient represents the
aggregate treatment effect – how much the average num-
ber of tasks chosen changes when the fixed amount rises.

10Augenblick and Rabin (2018) do not estimate individual distributions for this parameter, so we fix
it at the mean of the aggregate structural estimate. Moreover, each specification in Table 2 has slightly
different estimates, so we use Column 1 for this section.
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Next, we generate a minimum detectable effect curve as a function of the bootstrapped

sample size to get a sense of what treatment effects we are adequately powered to discern

at the 5% level (two-sided) with 80% power. For each simulated sample size, we run 200

regressions (as represented in Table 1), from which we use the mean of the estimated

standard error of β3 to compute the minimum detectable effect, MDE = (tα/2 + t1−κ)σβ̂,

under 80% power (κ = 0.8), and α = 0.05. As we vary the size of the bootstrapped sample,

the precision of our estimates will change, allowing us to plot a MDE curve as a function

of the bootstrapped sample, presented in Figure 3.11 According to Table 1, the treatment

effect of interest is expected to converge to about 12.9, which would require a sample of

roughly 600 observations to be adequately powered.

Because the treatment effect can vary a bit with a sample of 600 subjects, we take an

additional verification step and bootstrap 10,000 samples of 600 individuals from our sim-

ulated data and estimate the interaction effect therein. This yields 10,000 estimates of the

treatment effect from our simulated population, from which we extract that the 25th and

75th as roughly 9.4 and 15.1. We could be a bit more conservative and take a sample of

closer to 700 subjects given this information.

However, we’ve obtained this sample estimate by assuming that the λ we measure in our

first stage for each individual is identical to the λ that generates the data; when we instead

recover the λ̂MLE from first stage behavior, there will be some noise in our measurements,

which will affect the magnitude of the treatment effect as shown in the next section.

6.2 Approach 2: Noisy Recovery

The above analysis pre-supposes that we are perfectly measuring individual’s gain-loss

attitudes; by using the true λ to generate the effort predictions as well as classify the
11Note that the N presented is the total sample size of the experiment – 50% of which are in the

treatment condition, and the distribution of gain-loss attitudes among this sample is drawn as described
from that in Goette et al. (2018).
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Figure 3: Bootstrapped MDE by N. Minimum detectable effect, computed as MDE =
(tα/2+t1−κ)σβ̂ = 2.8σβ̂, is plotted by running the differences-in-differences specification and
using the associated standard error of β̂3 for various bootstrapped sample sizes, incremented
by 20 from 50 to 1000. Here, we use the parameters as given in Augenblick and Rabin
(2018)
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individual, we ignore the attenuation bias that arises from mismeasured λ.12 In this section,

we study how measurement error affects these simulations with an eye to the number of

observations we require after considering this additional noise.

To address this, we continue with our initial approach of drawing bootstrapped samples

from prior data, sampling γi ∼ N (2.138, 0.6922), φ = 724, as well as λi ∼ lognorm(meanlog =

0.17, sdlog =
√

0.29). With these parameters, we solve for the optimal CPE effort in each

of the Stage 1 choices, as well as for the Baseline and Treatment conditions in Stage 2.

Crucially, we generate "Observed Effort" by adding normally distributed noise (mean zero,

and standard deviation ranging from 0.5 to 12) to the optimal CPE effort, from which we

estimate individual Maximum Likelihood Estimates of λi using the simulated Stage 1 data.

Next, we compute the treatment effects replacing the true value of the gain-loss parameter

in the original differences-in-differences specification with the (MLE) value of λ:

ei = β0 + β1 × λ̂i + β2 × Treatmenti + β3(λ̂i × Treatmenti) + εi.

To understand how noise interacts with the attenuation of β3, we iterate over the standard

deviation of our normal error (from 0.5 to 12.5) and, for each error value, take the average

of β̂3 and se(β̂3) over 100 iterations.

Ultimately, this exercise reassures us that we are able to adequately recover values of

λi yielding regression estimates of our treatment effect in line with the perfect recovery

exercise. It also reminds us that there can be substantial heterogeneity on the treatment

effects across noise levels, with standard errors on our treatment, echoing the results from

drawing repeated samples of 600 observations from our population.
12Measurement error in the cost of effort parameters is of less concern to us here, because the treatment

effect of interest is a differences-in-differences estimate that crucially relies on gain-loss attitudes as opposed
to effort cost.
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6.3 Cost of Effort Curvature

There is one particular complication we would like to mention. The wide distribution of

γi ∼ N (2.138, 0.6922) we adopt in this pre-analysis plan causes some reason for concern

both in our MDE simulations and in our recovery of λi using the MLE procedure. First,

when bootstrapping the MDE, this distribution leads to a staggering number of corner

cases in our setting (because of the interaction with λi), which affects our power calcula-

tions. This can be seen in the histogram below (4), which demonstrates the (constrained)

optimal effort choices in our simulated treatment conditions. We therefore conduct our

analysis again with a more restricted distribution of γi ∼ N (2.138, 0.152), with Stage 2

choices reflected in the second histogram below. Under this distribution, the bootstrapped

heterogeneous treatment effect with 10000 draws from our population is shown in Table 2.

MDE analysis suggests that heterogeneous treatments will typically fall between 28.55 and

32.07, which would require much fewer observations for adequate power (closer to 100).

On the MLE front, this wide distribution on γi similarly leads to corner choices in the

Stage 1 data, which results in identification issues for λ. This is predominantly because

some of these simulated individuals are assigned combinations of λi and γi that yield no

variation across the Stage 1 choices (the corners). While we suspect that our subject pool

will have some fraction of individuals with similar difficulties, we do not expect it to be of

a similar magnitude as under the wide γi distribution. There, we recover about 80-95% of

the λ̂ values as non-missing, and 90% of our recovered λ̂ values represent the same gain-loss

type as the true λ.

7 Conclusion

This document has outlined our experimental design, tying it closely to theoretical deriva-

tions of KR preferences in the real-effort domain. In particular, we have derived heteroge-

neous treatment effects over gain-loss preferences, and used simulated data to demonstrate
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Table 2: Simulated Differences in
Differences Results

(New γi) (Aggregate)
Effort Choice Effort Choice

Constant 55.62 33.42
(0.6821) (0.379)

λ -16.20
(0.430)

Treatment -27.88 12.62
(1.000) (0.541)

λ× Treatment 29.94
(0.647)

Observations 10000 10000
R2 0.224 0.052

Notes: Notes: OLS regression with robust standard er-
rors in parentheses. New γi represents the base simula-
tion results, using Augenblick and Rabin (2018)’s esti-
mated parameters but reducing the standard deviation
on γi. Aggregate represents the regression of effort on
a constant and a treatment indicator (over all gain-loss
types). Thus, the constant in column 3 represents the
average number of tasks chosen when facing the low con-
dition, and the treatment coefficient represents the ag-
gregate treatment effect – how much the average number
of tasks chosen changes when the fixed amount rises.
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(a) γi ∼ N (2.138, 0.6192) (b) γi ∼ N (2.138, 0.152)

Figure 4: Distributions of Stage 2 Effort under Assumptions on γi

the magnitude of these effects under various assumptions. The key assumptions revolve

around the distributions of gain-loss preferences and the shape of the cost of effort function;

ultimately, while we are confident that λi ∼ lognorm(meanlog = 0.17, sdlog =
√

0.29)

represents a reasonable assumption, the results vary quite dramatically based on the cost

of effort curvature γi. Under one set of very conservative assumptions, we would require

roughly 700 observations to power heterogeneous treatment effects on the order of 12 tasks.

However, if we assume a tighter distribution (γi ∼ N (2.138, 0.152)), around 100 subjects

would be required for adequate power on treatment effects of around 30 tasks. Moreover,

we are aware that some fraction of subjects (potentially between 5% and 20%) will have to

be removed from our sample due to identification issues (if they only ever select a corner).

We therefore opt to recruit around 500-600 subjects to err on the side of caution. Im-

portantly, our first session will allow us to gauge whether our wages generate reasonable

variation in effort choices – if in fact the plurality of our subjects choose to complete 100

tasks at all wage offerings, then we can re-assess our assumptions on the cost of effort

curvature. More likely, if many subjects consistently opt for 0 tasks, we can raise our wage

offerings to induce variation.
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8 Blank Tables

Table 3: Aggregate Parameter Estimates

(1) (2)

Estimate (Std. Error)

c(e) = 1
αγ

(e+ 10)γ

Gain-Loss Parameter:
λ̂ ()

Cost of Effort:
α̂ ()
γ̂ ()

Notes: Maximum likelihood estimates. Robust standard
errors in parentheses. ci(e) refers to the cost of effort as-
sumption made.
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Table 4: Between Subject Comparative Static Test

(1) (2) (3) (4)

Dependent Variable: e
Full Sample Loss Averse Loss Neutral Gain Loving

Structural Bounds Taxonomy

Treatment (= 1 if )
() () () ()

Baseline (Constant)
() () () ()

R-Squared
# Observations

H0: No Treatment Effect F= F= F= F=
(p =) (p =) (p =) (p =)

H0: Treatment Effect (col. 2) = Treatment Effect (col. 4) F =
(p =)

Notes: Ordinary least square regression. Robust standard errors in parentheses. Significance levels:
* p < 0.1, ** p < 0.05, *** p < 0.01. Null hypotheses tested for 1) zero between subject treatment
effect, (βF=14 = 0); 2) Identical treatment effects across loss averse and gain loving agents (βF=14

(col. 2) = βF=14 (col. 4));. Hypotheses 2 tested using a differences-in-differences specification, ei =
β0+β1×1(LA)+β2×1(LN)+β3×Treatment+β4(Treatment×1(LN))+β5(Treatment×1(LA))+ε,
and reporting the statistics associated with β5. Taxonomy of types based on structural bounds. Loss
Neutral types are such that the 95% CI on the lambda include 1.
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Figure 5: Jobs Chosen by Wage. Augenblick and Rabin (2018)
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9 Instructions and Material Presented to Participants

The following set of screenshots demonstrates a demo version of our experiment, designed

on oTree (Chen et al., 2016).
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