Analysis Plan

Philip Liang
University of Chicago

September 18, 2020

I plan to analyze data at the group level. Following ?, I will use bootstrapping to perform significance testing. For each iteration, I will perform the following procedure. Let $F_{i}^{Q V, c l e a n}$ be the number of times the audit received a negative number of net votes under Quadratic Voting in the corruption game during the first 20 rounds in group i when the official was clean, $T_{i}^{Q V, \text { clean }}$ be the number of times auditing received 0 net votes under Quadratic Voting in the corruption game during the first 20 rounds in group i when the official was clean, $T_{i}^{Q V, \text { corrupt }}$ be the number of times auditing received 0 net votes under Quadratic Voting in the corruption game during the first 20 rounds in group i when the official was corrupt, and $P_{i}^{Q V, c}$ be the number of times the audit received positive net votes under Quadratic Voting in the corruption game during the first 20 rounds in group i. I define $W_{i}^{Q V, c}$, the total expected payoff under Quadratic Voting in the corruption game during the first 20 rounds in group i, by $W_{i}^{Q V, c}=-10 F_{i}^{Q V, \text { corrupt }}-8 T_{i}^{Q V, \text { corrupt }}-3 T_{i}^{Q V, \text { clean }}-6 P_{i}^{Q V, c}$. Let $W_{i}^{M V, c}$ denote the total payoff under majority voting in the corruption game during the first 20 rounds in group i. I start A and B off as empty sets and for each i from 1 to 4 , I add i to A with 50% probability and add i to B with 50% probability. I then compute $\sum_{i \in A} W_{i}^{M V, c}+\sum_{i \in B} W_{i}^{Q V, c}-\left(\sum_{i \in A} W_{i}^{M V, c}+\sum_{i \in B} W_{i}^{Q V, c}\right)$. I will use the sample probability that $\sum_{i \in A} W_{i}^{M V, c}+\sum_{i \in B} W_{i}^{Q V, c}-\left(\sum_{i \in A} W_{i}^{M V, c}+\sum_{i \in B} W_{i}^{Q V, c}\right) \geq W_{i}^{M V, c}-W_{i}^{Q V, c}$ as my p-value. Let $F_{i}^{Q V, p}$ be the number of times the proposal received a negative number of net votes under Quadratic Voting in the pollution game during the first 20 rounds in group i, $T_{i}^{Q V, \text { high }}$ be the number of times auditing received 0 net votes under Quadratic Voting in the pollution game during the first 20 rounds in group i when the owner faced a high cost, $T_{i}^{Q V, \text { low }}$ be the number of times auditing received 0 net votes under Quadratic Voting in the pollution game during the first 20 rounds in group i when the owner faced a low cost, $P_{i}^{Q V, \text { high }}$ be the number of times the audit received positive net votes under Quadratic Voting in the pollution game during the first 20 rounds in group i when the owner faced a high cost, and $P_{i}^{Q V, \text { low }}$ be the number of times the audit received positive net votes under Quadratic Voting in the pollution game during the first 20 rounds in group i when the owner faced a low cost. I define $W_{i}^{Q V, p}$, the total expected payoff under Quadratic Voting in the pollution game during the first 20 rounds in group i, by $W_{i}^{Q V, p}=-4 F_{i}^{Q V, c}-3 T_{i}^{Q V, \text { low }}-6 T^{Q V, \text { high }}-2 T_{i}^{Q V, \text { low }}-8 T^{Q V, \text { high }}$. Let $W_{i}^{M V, c}$ denote the total payoff under majority voting in the pollution game during the first 20 rounds in group i. I start A and B off as empty sets and for each i from 1 to 14 , I add i to A with 50% probability and add i to B with 50% probability. I then
compute $\sum_{i \in A} W_{i}^{M V, p}+\sum_{i \in B} W_{i}^{Q V, p}-\left(\sum_{i \in A} W_{i}^{M V, p}+\sum_{i \in B} W_{i}^{Q V, p}\right)$. I generate 10,000 bootstrapped samples. I will use the sample probability that $\sum_{i \in A} W_{i}^{M V, p}+\sum_{i \in B} W_{i}^{Q V, c}-$ $\left(\sum_{i \in A} W_{i}^{M V, p}+\sum_{i \in B} W_{i}^{Q V, c}\right) \geq W_{i}^{Q V, p}-W_{i}^{M V, p}$ as my p-value. I will generate 10,000 bootstrapped samples. I will limit the probability of committing a type I error in either of my payoff hypotheses to 0.05 by testing both at the 0.025 level.

I will run binomial tests to test whether groups are more likely to choose majority voting in the corruption treatment and QV in the pollution treatment.

