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1 Aim of the Study

We develop an experimental design to test for decoy effects in optimal stopping problems, as
predicted by salience theory of choice under risk (Bordalo et al., 2012). This experiment comple-
ments our existing work (Dertwinkel-Kalt et al., 2020) on salience effects in stopping problems.
The (non-parametric) salience predictions on decoy effects that we derive (and plan to test)
are inconsistent with other prominent models of choice under risk; in particular, (cumulative)
prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992).

2 Salience Theory of Choice under Risk

Consider a choice set C = {Xi}ni=1. The randomvariables (or lotteries)X1 toXn are non-negative
with a joint cumulative distribution function F : Rn≥0 → [0, 1]. A state of the world refers to a
tuple of outcomes, (x1, . . . , xn) ∈ Rn≥0. If a randomvariable is degenerate, we call it a safe option.

A salient thinker is intrinsically (weakly) risk-averse, but sometimes behaves in a risk-seeking
manner, because he inflates the probabilities of the most salient states of the world. More pre-
cisely, a salient thinker evaluates monetary outcomes via an increasing and (weakly) concave
value function v : R≥0 → R≥0, and compares the value of a given lottery, v(Xi), to a reference
point Ri = φ(v(X1), . . . , v(Xi−1), v(Xi+1), . . . , v(Xn)). Bordalo et al. (2012) assume that the ref-
erence point is given by the state-wise average over all alternative options: Ri = 1

n−1
∑

j 6=i v(Xj).
We, in contrast, allow for a more general reference point φ : Rn−1 → R that (i) strictly increases
in each of its arguments and (ii) satisfies φ(z, . . . , z) = z. When evaluating a lotteryXi, a salient
thinker assigns a subjective probability to the state (x1, . . . , xn) ∈ Rn≥0 that depends on the state’s
objective probability, and on how salient the realized value v(xi) is relative to the realized ref-
erence point ri = φ(v(x1), . . . , v(xi−1), v(xi+1), . . . , v(xn)). Specifically, the salience of a tuple
(v(xi), ri) ∈ R2

≥0 is measured via a so-called salience function that is defined as follows:
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Definition 1 (Salience Function). A symmetric, bounded, and continuous function σ : R2
≥0 → R>0

is a salience function if and only if it satisfies the following two properties:1

1. Ordering. Let x ≥ y. Then, for any ε, ε′ ≥ 0 with ε+ ε′ > 0, we have

σ(x+ ε, y − ε′) > σ(x, y).

2. Diminishing sensitivity. For any x 6= y and any ε > 0, we have

σ(x+ ε, y + ε) < σ(x, y).

We say that (v(xi), ri) ∈ R2
≥0 is the more salient the larger its salience value σ(v(xi), ri) is.

Ordering implies that a pair of outcomes is the more salient the more these outcomes differ,
thereby capturing the well-known contrast effect (e.g., Tversky and Kahneman, 1992; Schkade
and Kahneman, 1998). Diminishing sensitivity reflects Weber’s law of perception and can be
understood as a level effect: a given contrast in outcomes is more salient at lower outcome levels.

Following Bordalo et al. (2012), we assume that a salient thinker chooses an option from the
choice set C in order to maximize his salience-weighted utility, which is defined as follows:

Definition 2. The salience-weighted utility of lottery Xi evaluated in C = {Xj}nj=1 equals

U s(X|C) = 1∫
R2
≥0
σ
(
v(xi), ri

)
dF (x1, . . . , xn)

∫
R2
≥0

v(xi) · σ
(
v(xi), ri

)
dF (x1, . . . , xn),

where σ : R2
≥0 → R>0 is a salience function that is bounded away from zero.

3 The Stopping Problem

The agent has to decide whether to invest in one of (at most) two assets. In the following, we
refer to these assets as X and Y . The assets’ prices follow Arithmetic Brownian Motions (ABM):

dXt = µXdt+ νdWt,

and
dYt = µY dt+ νdUt,

where both assets share the same initial value X0 = z = Y0 and the same volatility ν ∈ R>0,
but Asset X has a larger drift than Asset Y , µX > µY . We further assume that the standard
Brownian Motions (Wt)t∈R≥0

and (Ut)t∈R≥0
are independent of each other.

If the agent invests in either asset, he is restricted to choose a threshold stopping time, τa,b,
which is defined as the first leaving time of the interval (a, b) for some a < z < b. This means
that the agent can sell an asset either at price a or at price b, but at no other prices. We say that a

1Bordalo et al. (2012) also allow for random variables with negative outcomes and add a third property to ensure
that diminishing sensitivity (with respect to zero) reflects to the negative domain: by the reflection property, for any
w, x, y, z ≥ 0, it holds that σ(x, y) > σ(w, z) if and only if σ(−x,−y) > σ(−w,−z).
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threshold stopping time τa,b is a loss-exit strategy if and only if b−z > z−a. Instead of investing,
the agent could always decide to receive the initial price of z with certainty. We study two
different scenarios in which the agent’s choice set is either C = {Xτa,b , z} or C = {Xτa,b , Yτa,b , z}.

Notice that, given µ ∈ {µX , µY }, the probability of selling an asset at the lower price a is

p(µ) =
exp(−(2µ/ν2)b)− exp(−(2µ/ν2)x)
exp(−(2µ/ν2)b)− exp(−(2µ/ν2)a)

. (1)

Define pX := p(µX) and pY := p(µY ), and note that pX < pY . Since the prices of Asset X and
Asset Y evolve independently of each other, the joint distribution ofXτa,b and Yτa,b is as follows:

pXpY pX(1− pY ) (1− pX)pY (1− pX)(1− pY )

Xτa,b a a b b

Yτa,b a b a b

Table 1: Joint distribution of Xτa,b and Yτa,b .

This implies, in particular, that, for the choice set C = {Xτa,b , Yτa,b , z}, the reference point Rk
relative to which Asset k ∈ {X,Y } is evaluated has the following distribution:

pXpY pX(1− pY ) (1− pX)pY (1− pX)(1− pY )

RX φ
(
v(z), v(a)

)
φ
(
v(z), v(b)

)
φ
(
v(z), v(a)

)
φ
(
v(z), v(b)

)
RY φ

(
v(z), v(a)

)
φ
(
v(z), v(a)

)
φ
(
v(z), v(b)

)
φ
(
v(z), v(b)

)
Table 2: Distribution of the reference points in the larger choice set.

4 Salience-Driven Decoy Effects

We derive a few general predictions on how a salient thinker will behave in the two different
scenarios. The first result — which is a re-statement of Proposition 3 in Dertwinkel-Kalt et al.
(2020) — deals with the case of a binary choice set and an Asset X with a non-negative drift.
This proposition will serve us as a benchmark in the following: it says that in this case a salient
thinker invests in Asset X only if the available stopping time is a loss-exit strategy.

Proposition 1 (Binary Choice Set). Let C = {Xτa,b , z}, and suppose that the drift of Asset X is
non-positive (i.e. µX ≤ 0). Then, a salient thinker invests in Asset X only if τa,b is a loss-exit strategy.

The second (and main) theoretical result describes a decoy effect: if the choice set includes
also the dominated Asset Y and if this dominated asset has a sufficiently negative drift, then—
compared to the case with a binary choice set — Asset X becomes more attractive to a salient
thinker. Hence, a sufficiently “bad” Asset Y serves as a decoy that boosts demand for AssetX .

Proposition 2 (Decoy Effect). Let C = {Xτa,b , Yτa,b,, z}, and recall that µX > µY .

(a) The salient thinker will never invest in the dominated Asset Y .
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(b) The salience-weighted utility derived from investing in Asset X monotonically increases in pY .

(c) There is some µ̂ ∈ R ∪ {−∞}, so that a salient thinker invests in Asset X if and only if µY < µ̂.

(d) If the salient thinker invests in Asset X when facing the binary choice set {Xτa,b , z}, then µ̂ ∈ R.

5 An Experiment on Decoy Effects in Stopping Problems

5.1 Experimental Design and Implementation

We conduct an online experiment in which subjects have to decide whether or not to invest in
one (of at most two) assets. The price of any asset (that can be chosen during the experiment)
follows anABMwith the same initial price z = 100 and the same volatility ν = 5. The drift of the
ABM that describes an asset’s price can differ, however. There are two types of assets: In each
decision, subjects can invest inAsset Green, which has a drift µGreen = 0. In some decisions, they
can further invest in an Asset Blue with a drift µBlue ∈ {−10,−20}. Subjects can always choose
the outside option of No Investment, in which case they receive an asset’s initial price of z = 100
Taler (an experimental currency that is converted into Pounds at a ratio of 60:1) with certainty.
Figure 1 illustrates the decision screens with only one (left panel) or two (right panel) assets.

Figure 1: Screenshots of the decision screen with and without a decoy.

If a subject decides to invest in an asset, she can sell it at pre-specified prices 90 and 190.
More precisely, if a subject invests, then the price of the asset will change until it reaches either
90 or 190. The asset cannot be sold at other prices. Notice that, motivated by Proposition 1, this
“selling strategy” is a loss-exit strategy and, thus, potentially attractive to a salient thinker.

Each subject makes three investment decisions: one decision with a binary choice set (Asset
Green vs. No Investment) and two with a larger choice set (Asset Green vs. Asset Blue vs. No
Investment) for µBlue ∈ {−10,−20}. The order of decisions is randomized at the subject level.

To explain the drift of an ABM to the subjects, they have to draw three sample paths from
the underlying process and, in addition, they see an overview of five additional sample paths of
this process before making a decision (see Figure 2 for examples of the latter with and without
a decoy). The sample paths are randomly drawn at the subject level; that is, different subjects
see different sample paths of the same underlying process.
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Figure 2: Screenshots of the sampling screens with and without a decoy.

At the end of the experiment, one of the three investment decisions will be randomly drawn
by the computer to be payoff-relevant. All subjects receive an additional £3 for their participa-
tion in the experiment.

We plan to run the experiment online via the Oxford lab with a total number of n = 250

subjects. The experiment will take place in March/April 2021.

5.2 Hypotheses and Statistical Tests

Our main outcome of interest is the share of subjects investing in Asset Green. Let ωi,k be a
binary indicator that takes a value of 1 if subject i ∈ {1, . . . , n} invests in Asset Green in decision
k ∈ {1, 2, 3} and a value of zero otherwise. We sort the decisions in the following way: k = 1

refers to the binary choice set (no decoy); k = 2 refers to the decision where Asset Blue has a drift
of µBlue = −10; and k = 3 refers to the decision where Asset Blue has a drift of µBlue = −20.

Before we can state our hypotheses, we need to make a few assumptions on how to deal
with subjects choosing the dominated Asset Blue. We assume that (1) any subject choosing the
dominated Asset Blue does so by mistake, and (2) the probability of making a mistake is inde-
pendent of whether a subject would have chosenAsset Green orNo Investment otherwise. Under
these two assumptions, we can simply drop the choices in favor of the dominated asset (without
creating any bias), and define our outcome variables as follows: denote as Ik ⊆ {1, . . . , n} the
set of subjects who do not choose the dominated asset in decision k ∈ {2, 3}, and define

ωno :=
1

n

n∑
i=1

ωi,1, and ω10 :=
1

|I2|
∑
i∈I2

ωi,2, and ω20 :=
1

|I3|
∑
i∈I3

ωi,3.

We then hypothesize:

Hypothesis 1. ω20 ≥ ω10.

Hypothesis 2. ω10 6= ωno.

Hypothesis 3. ω20 6= ωno.

The first hypothesis follows from Proposition 2 (b), and provides a clear test of the salience
model thatwe have set up. Also the second and the third hypothesis are consistentwith salience
theory, but neither allows us to falsify the theory (see Proposition 2). Notably, it could be the
case — and salience theory allows for this — that subjects completely neglect “too bad” decoys:
in this case, Hypothesis 1 is not implied by salience theory.
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To test for Hypothesis 1, we conduct a (one sided) t-test of the null-hypothesis ω20 < ω10,
with standard errors being clustered at the subject level. To test for Hypothesis 2, we conduct a
(two sided) t-test of the null-hypothesis ω10 = ωno, with standard errors being clustered at the
subject level. To test for Hypothesis 3, we conduct a (two sided) t-test of the null-hypothesis
ω20 = ωno, with standard errors being clustered at the subject level.
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Appendix A: Proofs

Proof of Proposition 1. See Proposition 3 in Dertwinkel-Kalt et al. (2020).

Proof of Proposition 2. Part (b). The salience-weighted utility from investing in Asset X is

U s(Xτa,b |C) = v(a)π(pX , pY ) + v(b)
[
1− π(pX , pY )

]
,

where
π(pX , pY ) :=

pXsa(pY )

pXsa(pY ) + (1− pX)sb(pY )
,

with sa(pY ) := pY σ
(
v(a), φ(v(z), v(a)

)
+(1−pY )σ

(
v(a), φ(v(z), v(b)

)
being the average salience

of a and sb(pY ) := pY σ
(
v(b), φ(v(z), v(a)

)
+ (1− pY )σ

(
v(b), φ(v(z), v(b)

)
being that of b.

Since φ(v(z), v(b)) > φ(v(z), v(a)) and, thus, σ
(
v(a), φ(v(z), v(b)

)
> σ

(
v(a), φ(v(z), v(a)

)
by

the ordering property, sa(pY ) is strictly decreasing in pY . Analogously, ordering implies that
σ
(
v(b), φ(v(z), v(a)

)
> σ

(
v(b), φ(v(z), v(b)

)
, so that sb(pY ) is strictly increasing in pY . It follows

that π(pX , pY ) is strictly decreasing and, thus, U s(Xτa,b |C) is strictly increasing in pY .
Part (a). Next, we observe that

∂

∂pX
π(pX , pY ) =

sa(pY )
[
pXsa(pY ) + (1− pX)sb(pY )

]
− pXsa(pY )

[
sa(pY )− sb(pY )

](
pXsa(pY ) + (1− pX)sb(pY )

)2
=

sa(pY )sb(pY )(
pXsa(pY ) + (1− pX)sb(pY )

)2 > 0,

which, in turn, implies that U s(Xτa,b |C) is strictly decreasing in pX .
Combining this with Part (b) and the fact that pY > pX , we conclude:

U s(Xτa,b |C) = v(a)π(pX , pY ) + v(b)
[
1− π(pX , pY )

]
> v(a)π(pX , pX) + v(b)

[
1− π(pX , pX)

]
> v(a)π(pY , pX) + v(b)

[
1− π(pY , pX)

]
= U s(Yτa,b |C).

Part (c). Follows immediately from the fact that U s(Xτa,b |C) is increasing in pY .
Part (d). Given the binary choice set C′ = {Xτa,b , z}, the salience-weighted utility from

investing in Asset X is given by U s(Xτa,b |C′) = v(a)π̃ + v(b)
[
1− π̃

]
, where

π̃ :=
pXσ

(
v(a), v(z)

)
pXσ

(
v(a), v(z)

)
+ (1− pX)σ

(
v(b), v(z)

) .
Notice that

lim
pY→1

π(pX , pY ) =
pXσ

(
v(a), φ(v(z), v(a)

)
pXσ

(
v(a), φ(v(z), v(a)

)
+ (1− pX)σ

(
v(b), φ(v(z), v(a)

) < π̃,

since, by ordering, σ
(
v(a), φ(v(z), v(a)

)
< σ

(
v(a), v(z)

)
andσ

(
v(b), φ(v(z), v(a)

)
> σ

(
v(b), v(z)

)
.

Hence, if U s(Xτa,b |C′) > 0, then also limpY→1 U
s(Xτa,b |C) > 0.
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