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1 Aim of the Study

Models of non-linear probability weighting, such as cumulative prospect theory (henceforth:
CPT; Tversky and Kahneman, 1992), predict time-inconsistent behavior when applied to a dy-
namic context (e.g., Machina, 1989). While time-inconsistent behavior is indeed widespread,
common specifications of CPT have (too) extreme implications in certain setups (e.g., Ebert
and Strack, 2015, 2018). In this study, we compare the implications of (exogeneous) probability
weighting as assumed in CPT to those of (endogenous) probability weighting as proposed in
salience theory of choice under risk (Bordalo et al., 2012), under the (testable) assumption that
the decision maker is naive about his time-inconsistency.

We propose a dynamic saliencemodel to study the choice ofwhen to optimally stop an arith-
metic brownian motion with non-positive drift. Our salience model predicts that the optimal
stopping behavior is sensitive to the drift of the process; namely, a naive agent will gamble if
the drift of the process is slightly negative, but will stop immediately if the drift becomes too
negative. This prediction is arguably more plausible than those of CPT, which under common
specifications predicts excessive gambling irrespective of the drift of the process, and EUT (with
a concave utility function), which predicts no gambling at all.

2 A Dynamic Version of Salience Theory of Choice under Risk

2.1 Static Model

Consider an agent choosing from a choice set C that contains exactly two non-negative random
variables (or lotteries), X and Y . Let S ⊆ R2

≥0 be the support of the joint distribution of X and
Y . We denote the corresponding joint cumulative distribution function as F . Moreover, if a
random variable (or lottery) is degenerate, we call it a safe option.

According to salience theory of choice under risk (Bordalo et al., 2012), the agent evaluates
a random variable by assigning a subjective probability to each state of the world s ∈ S that
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depends on the state’s objective probability and on its salience. The salience of a state is assessed
by a salience function, which is defined as follows.

Definition 1. A symmetric, bounded, and absolutely continuous function σ : R2
≥0 → R>0 is a salience

function if and only if it satisfies the following two properties:

1. Ordering. Let x ≥ y. Then, for any ε, ε′ ≥ 0 with ε+ ε′ > 0, we have

σ(x+ ε, y − ε′) > σ(x, y).

2. Diminishing sensitivity. For any ε > 0, we have

σ(x+ ε, y + ε) < σ(x, y).

Wesay that a given state of theworld (x, y) ∈ S is themore salient the larger its salience value
σ(x, y) is. Ordering implies that a state is the more salient the more the attainable outcomes in
this state differ. In this sense, ordering captures the well-known contrast effect (e.g., Schkade
and Kahneman, 1998), whereby large contrasts (in outcomes) attract a great deal of attention.
Diminishing sensitivity reflects Weber’s law of perception and it implies that the salience of a
state decreases if the outcomes in this state uniformly increase.1

A salient thinker evaluates monetary outcomes via a linear value function, u(x) = x, and
chooses from the set C = {X,Y } as to maximize his salience-weighted utility defined as follows,
whereby the salience-weighted probabilities are normalized so that they sum to one (e.g., Bor-
dalo et al., 2012; Dertwinkel-Kalt and Köster, forthcoming).

Definition 2. The salience-weighted utility of a lottery X evaluated in the choice set C = {X,Y } is

U s(X|C) =

∫
R2
≥0

x · σ(x, y)∫
R2
≥0
σ(s, t) dF (s, t)

dF (x, y),

where σ : R2
≥0 → R>0 is a salience function that is bounded away from zero.

2.2 Dynamic Model

Stochastic process. We build on the setup by Ebert and Strack (2015, 2018) who assume that
the wealth of an agent who steadily participates in a gamble evolves according to a Markov
diffusion. Specifically, we consider an Arithmetic Brownian Motion (ABM)

dXt = µdt+ νdWt

with an intial valueX0 = x, a drift µ ∈ R, a volatility ν ∈ R>0, and a standard BrownianMotion
(Wt)t∈R≥0

. Following Ebert and Strack (2015, 2018) we abstract from discounting.
1Bordalo et al. (2012) also allow for lotteries with negative outcomes and therefore add a third property of a

salience function to ensure that diminishing sensitivity (with respect to zero) reflects to the negative domain: by
reflection, for any w, x, y, z ≥ 0, we have σ(x, y) > σ(w, z) if and only if σ(−x,−y) > σ(−w,−z).
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To make the theory testable in the context of an incentivized lab experiment, we deviate
from Ebert and Strack (2015) in two ways: First, we assume that the process is non-negative,
Xt ≥ 0, and absorbing in zero. Second, we allow for a finite expiration date T ∈ R>0 ∪ {∞}.

The set of stopping strategies. The central feature of a Markov diffusion is that the distribu-
tion of future wealth does not depend on the history of the process. Following Ebert and Strack
(2018), we thus restrict attention to Markovian (pure) strategies, according to which the agent
conditions the decision whether to stop at time t only on the payoff-relevant variables: the cur-
rent wealth level, Xt, and the time distance to the expiration date, T − t. A (stopping) strategy
s : R≥0 × [0, T ]→ {stop, continue} is a deterministic function of the payoff-relevant variables.

For tractability, we derive certain results under the restriction to time-invariant strategies,
which satisfy s(y, T − t) = s(y) for any wealth level y ∈ R≥0 and any point in time t ∈ [0, T );
that is, irrespective of the distance to the expiration date, the current wealth level determines
the agent’s stopping decision. For a time-invariant strategy, s, there exists a single stopping set

S := {y ∈ R≥0 : s(y) = stop} ⊆ R≥0

such that an agent playing according to strategy s stops at time t ∈ [0, T ) if and only if Xt ∈ S.
Thus, conditional on stopping before the expiration date T , following stopping strategy s at
time t is equivalent to choosing a distribution over future wealth with support S .

Notice that the process (Xt)t∈R≥0
has continuous paths by assumption. Thus at any time t,

conditional on stopping before the expiration date, any time-invariant strategy s can be repre-
sented as a binary lottery with outcomes at = sup{y ∈ S : y ≤ xt} and bt = inf{y ∈ S : y ≥ xt}
(Ebert and Strack, 2018, p. 13). But, depending on the thresholds at and bt, the agent may not
stop before the expiration date T , which gives rise to a random wealth level XT∧τat,bt with

τat,bt = inf{r > t : s(Xr) = stop} = inf{r > t : Xr /∈ (at, bt)}

being the first leaving time of the interval (at, bt).

Solution concept. Since non-linear probabilityweighting implies that an agent’s optimal strat-
egy at time t might no longer be optimal at some later point in time (e.g., Machina, 1989), the
stopping behavior under salience theory depends on whether the salient thinker is aware of
this time-inconsistency or not. We follow Ebert and Strack (2015) and assume that the agent is
naive about his time-inconsistency.

As in Ebert and Strack (2015) we assume that “at every point in time the naive [salient
thinker] looks for a [...] strategy s that brings her higher [salience-weighted utility] than stop-
ping immediately. If such a strategy exists, [he] holds on to the investment—irrespective of [his]
earlier plan.” We thereby assume that the naive salient thinker evaluates each stopping strat-
egy in isolation, meaning that he compares it only to the alternative of stopping immediately.
While this assumption entails a loss of generality, we do not regard it as far-fetched, because, at
a given point in time t, the agent simply decides whether to stop the process or not, and only
conditional on not stopping the process the exact stopping strategy matters. We think that the
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agent’s reasoning on whether to stop at time t is well captured by comparing a given stopping
strategy to the alternative of stopping immediately. Assuming that the naive salient thinker
gambles if and only if he strictly prefers to do so, the naive decision rule then reads as follows.

Definition 3 (NaiveDecisionRule). Anaive salient thinker continues at time twith a current wealth
level xt if there exists a stopping time τat,bt with at < xt < bt, such that he chooses the random variable
XT∧τat,bt from the set {XT∧τat,bt , xt}. Otherwise, the naive salient thinker stops at time t.

3 Stopping Behavior of a Naive Salient Thinker

We characterize the stopping behavior of a naive salient thinker by translating the dynamic de-
cision when to stop the process into a static choice between a (binary) lottery and a safe option
that pays the current wealth level. More precisely, we start out from the case of a fair gam-
ble and ask whether there exists some time-invariant stopping strategy that is more attractive
than stopping immediately. Subsequently, we extend our findings to processes with a slightly
negative drift. In a last step, we analyze the limits of naive gambling under salience theory.

Naive gambling under salience theory. Consider a salient thinker with a current wealth level
of xt. For the sake of illustration, let T = ∞, in which case any pure Markov strategy is time-
invariant, and let µ = 0, which implies that the gamble is “fair”. Suppose that at time t the
salient thinker chooses a stopping strategy s that can be represented by the stopping time τa,b
and therefore induces a binary lottery over wealth, Xτa,b = (a, p; b, 1− p), where p = b−x

b−a gives
the probability that the downside payoff a is realized. Since the process has zero drift by as-
sumption, the expected value of this binary lottery is given by E[Xτa,b ] = xt.

By construction, if both states are equally salient, the salient thinker behaves as if he was
risk neutral; that is, he is indifferent between the lotteryXτa,b and the safe option xt. In fact, the
salient thinker strictly prefers the binary lottery Xτa,b over the safe option paying the lottery’s
expected value xt if and only if the lottery’s upside payoff, b, is more salient than its downside
payoff, a; that is, if and only if σ(b, xt) > σ(a, xt) holds. Due to σ(b, xt) > σ(xt, xt) as well
as continuity of the salience function, we can find, for any xt, outcomes a and b so that the
salient thinker strictly prefers the binary lottery Xτa,b over the safe option xt. Since the salient
thinker can choose a and b independently of each other, he can always find a stopping time
τa,b that yields a strictly higher salience-weighted utility than stopping immediately. Hence, by
Definition 3, if T = ∞, a naive salient thinker never stops a process with zero drift. Since the
salience-weighted utility is continuous in the probability p = p(a, b, µ) that the lower outcome
a is realized, which in turn is continuous in the drift µ (see Lemma 1 in the Appendix), the
preceding arguments (partly) extend to processes with a slightly negative drift. The following
proposition further shows that the results still hold in setups with a finite expiration date.

Proposition 1. Fix an initial wealth level x ∈ R>0 and an expiration date T ∈ R>0 ∪ {∞}.

(a) If the drift is non-negative, then the naive salient thinker never stops before the expiration date T .

(b) For any initial wealth x and any volatility ν, there is a constant µ̂ < 0 so that for any drift µ > µ̂, a
naive salient thinker starts to gamble (but does not necessarily continue until the expiration date).
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The role of skewness in naive gambling. Dertwinkel-Kalt and Köster (forthcoming) show
that in static choices a salient thinker takes a binary risk (over its expected value) if and only
if it is sufficiently right-skewed (or positively skewed); that is, if and only if the binary lottery
offers a large, but unlikely upside and a likely downside that is close to the expected value.
A preference for positive skewness is also what drives a salient thinker’s dynamic gambling
behavior. To make this point explicit, we introduce the notion of a naively right-skewed strategy.

Definition 4. A time-invariant stopping strategy s(y, t) = s(y) is naively right-skewed at time t if
and only if the corresponding stopping time τa,b satisfies b− xt > xt − a.2

Similar to the case of static choices, as analyzed in Dertwinkel-Kalt and Köster (forthcom-
ing), ordering and diminishing sensitivity together imply that a salient thinker gambles accord-
ing to a certain stopping strategy only if it is naively right-skewed. As an illustration, consider
again the case without an expiration date and assume a zero drift. If b − xt < xt − a, then not
only is the payoff level lower in the state (a, xt) compared to the state (b, xt), but also the con-
trast in outcomes is larger in this state. Hence, the downside a is more salient than the upside b,
which makes this stopping strategy unattractive to a salient thinker. The argument extends to
processes with a negative drift as well as to setups with a finite expiration date. Conversely, due
to diminishing sensitivity, b− xt > xt − a does not imply that the upside b is more salient than
the downside a, so that a salient thinker does not choose any naively right-skewed strategy.

Proposition 2. Anaive salient thinker chooses a time-invariant strategy only if it is naively right-skewed.

On the limits of naive gambling. Next, we explore the limits on the gambling behavior of a
naive salient thinker, under the restriction to time-invariant strategies.

Proposition 3. Suppose that the agent can only choose time-invariant strategies. Then, for any initial
wealth level x ∈ R>0 and any volatility ν, there exists a constant µ̃ < 0 such that for any drift µ < µ̃ a
naive salient thinker stops immediately.

Since the salience function is bounded, the (naive) skewness created by a time-invariant stop-
ping time τa,b is not enough to make up for the fact that the expected value will be close to a for
a sufficiently negative drift, irrespective of the initial wealth level x. As a consequence, a naive
salient thinker immediately stops any process with a sufficiently negative drift.

If we assume that the expiration date is sufficiently large, our model makes the stronger
prediction that a salient thinker’s stopping behavior depends on the drift in a montonic way.

Proposition 4. Suppose that the agent can only choose time-invariant strategies, and fix an initial wealth
level x ∈ R>0 as well as a volatility ν. For any two drifts µ and µ′ with 0 ≥ µ′ > µ, there exists some
threshold value T̂ ∈ R>0 such that, for any expiration date T ≥ T̂ , a naive salient thinker immediately
stops the process with drift µ if he does so for the process with drift µ′.

2Not any stopping strategy that induces a right-skewed distribution overwealth is also naively right-skewed. Let
T =∞ and µ < 0. Suppose that the current wealth level is x, and consider the stopping time τa,b with a = x− ε− ε′
and b = x + ε for ε, ε′ > 0, which gives rise to a binary lottery Xτa,b . As shown by Ebert (2015), a binary lottery is
(unambigously) right-skewed if and only if its lower payoff is strictly more likely than its higher payoff. Thus, for
ε′ sufficiently close to zero, the binary lottery Xτa,b is right-skewed as P[Xτa,b = a] > 1

2
due to the negative drift.

But obviously the corresponding stopping strategy is not naively right-skewed. Just for processes with zero drift a
strategy is naively right-skewed if and only if the corresponding binary lottery is right-skewed.

5



To establish the intuition for this stronger result, we start again with the case of no expiration
date. Recall that, for T = ∞, any stopping time τa,b induces a binary distribution over wealth,
Xτa,b , and notice that an increase in the drift µ improves this binary distribution in terms of first-
order stochastic dominance. As a consequence, a salient thinker’s certainty equivalent to Xτa,b

monotonically increases in the drift of the process (Proposition 1 inDertwinkel-Kalt andKöster,
forthcoming). If we allow for T < ∞, we observe that also the distribution of XT , conditional
on reaching the expiration date with the stopping time τa,b, is monotonic (in terms of first-order
stochastic dominance) in the drift, which makes the result extend to finite expiration dates.

4 An Experiment on Dynamic Gambling Behavior

4.1 Experimental Design and Implementation

We conduct a lab experiment in which subjects have to decide at which price to sell an asset.
Subjects make their selling decisions in (approximately) continuous time and they can hold
the asset for a maximum duration of 10 seconds. If a subject does not sell the asset within 10
seconds, it is automatically sold at the price reached at the expiration date. The selling price
follows an ABM with a drift parameter µ ∈ {0,−0.1,−0.3,−0.5,−1,−2} and a volatility ν = 5,
and it is updated every tenth of a second, which implies T = 100.3 The asset’s initial price is
equal to x = 100 Taler, an experimental currency that is converted into Euros at a ratio of 10:1.

We restrict the strategy space to all time-invariant strategies, as it is illustrated in Figure 1: at
every point in time subjects can choose an upper and a lower stopping threshold. Once the price
of the asset reaches either threshold, subjects can decide whether to sell the asset at this price
or to adjust the thresholds and continue the process (see the lower left panel). In addition,
subjects can pause the process at any point in time to adjust the thresholds (see upper right
panel). But, importantly, subjects can set only one upper bound and one lower bound at a time
and thus observe each stopping strategy in isolation. Before starting the process, subjects can
further decide to sell the asset immediately (see the upper left panel). At the beginning, the
upper and lower bound are centered symmetrically around the initial price. In order to start
the process, subjects have to move each bound at least once.

Overall, subjects make six selling decisions, one decision for each of the drift parameters.
The order of drifts is randomized at the subject level. To explain the drift of an ABM to the
subjects, they have to draw three sample paths from the underlying process and, in addition,
they see an overview of ten additional sample paths of this process before making a decision
(Figure 2). The sample paths are randomly drawn at the subject level; that is, different subjects
see different sample paths of the same underlying process.

Aftermaking the six selling decisions, subjectsmake twelve choices between a binary lottery
and a safe option paying the lottery’s expected value. The binary lotteries are the same as the
ones used in Experiment 1 of Dertwinkel-Kalt and Köster (forthcoming): more specifically, we
use two sets of lotteries with the same expected value and the same variance, but different levels

3Notice that the drift of an ABM is additive over time. To help subjects understand what the drift of a process
is, we present them with aggregated drifts per second µ ∈ {0,−1,−3,−5,−10,−20} in the experiment.
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Figure 1: Screenshots of the decision screen for the process with zero drift (in German). The red lines
indicate the upper and lower stopping bounds. The blue button in the upper left panel says "Sell Immedi-
ately". The button in the upper right panel allows subjects to pause the process. The buttons in the lower
left panel say "Sell" or "Adjust the bounds". The lower right panel displays the final selling price.

of skewness. The order of lotteries is randomized at the subject level. Finally, subjects answer
five CRT-questions and five financial literacy questions.

At the end of the experiment, one of the six selling decisions will be randomly drawn by
the computer to be payoff-relevant. In addition, we will randomly draw one subject in each
session forwhom also one of the twelve binary choices is randomly chosen to be payoff-relevant.
Subjects will be further rewarded for correctly answered CRT and financial literacy questions
(1 Taler per correctly answered question). All subjects receive an additional 4 Euros for their
participation in the experiment.

Figure 2: Screenshots of the sampling screens for the process with zero drift (in German).

Weplan to conduct 5 sessions with a total number of n = 150 subjects. The sessions will take
place in January/February 2020 at the experimental laboratory of the University of Cologne.
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4.2 Salience Predictions

In this section we specify the predictions that guided our experimental setup. The first three
predictions follow directly from our model, under the assumption that subjects are heteroge-
neous with respect to their salience function. The last prediction is not a direct implication.

Within-subjects predictions. By Proposition 1 (a), a naive salient thinker will never stop a
process with zero drift before the expiration date. This gives rise to our first prediction:

Prediction 1. If µ = 0, subjects hold the asset until the expiration date.

Proposition 2 further implies that a naive salient thinker will only gamble according to
naively right-skewed strategies. This gives rise to our second prediction:

Prediction 2. Subjects choose naively right-skewed strategies.

Between-subjects predictions. By Propositions 3 and 4, we expect a monotonic relationship
between the drift of the process and a subject’s stopping behavior. Assuming that the subjects
are heterogeneous with respect to their salience functions, we obtain our third prediction:

Prediction 3. The share of subjects selling the asset immediately monotonically decreases in the drift.

Since our model extends a theory of static choice under risk to a dynamic setup, we will
further study the relationship between the subjects’ static and dynamic risk preferences. For
that, we classify the choice of a binary lottery in one of the twelve static decisions, which each
subject has to make, as a skewness seeking choice if and only if this lottery is right-skewed.

Prediction 4. The share of skewness seeking choices by a subject in the static decisions is positively
correlated with the share of naively right-skewed strategies this subject chooses in the dynamic decisions.

Testing the naivete assumption. As we show in Appendix B, our design allows us to test
the assumption of naivete about the own time-inconsistency within the salience framework.
A sophisticated salient thinker (without committment), who can only choose time-invariant
strategies, immediately sells any asset with a non-positive drift. Hence, naivete is a necessary
assumption to rationalize gambling (within the salience framework) in our experiment.

4.3 Analysis

Descriptive analysis. Based on Predictions 1 and 2, wewill classify subjects into three groups:
For each subjectwe count howmany of the choices in the six selling decisions are consistentwith
salience theory, CPT, and EUT.We then divide subjects into three groups depending onwhich of
the theories best predicts their behavior (in the sense of maximizing the number of choices that
are consistent with a theory). We are interested in the share of subjects whose behavior is best
explained by salience theory, compared to the alternative models. As a robustness check, we
will restrict attention to the subset of subjects who behave in line with one of the three theories
in all choices (in particular, all strategies they choose) they make in the six selling tasks.
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Statistical analysis. In the following, we denote the process with the k-th largest drift as pro-
cess k ∈ {1, 2, . . . , 6} and we index subjects by i ∈ {1, 2, . . . , n}.

To test for Prediction 3, we will construct for each subject i and each process k a binary
indicator, Si,k, that takes a value of one if the subject has stopped the process immediately and
a value of zero otherwise. Then, using OLS, we regress Si,k on a continuous variable µk that
indicates the drift of the process. We cluster the standard errors at the subject level. According
to Prediction 3, the coefficient on the drift should be negative and statistically significant.

To test for Prediction 4, wewill calculate, for each subject i, the share of naively right-skewed
strategies, NRSi, chosen in the six (dynamic) selling decisions. In addition, we calculate for
each subject i the share of skewness seeking choices (as defined in the preceding subsection),
SSCi, in the twelve static decisions. We then regress NRSi on SSCi using OLS, with the stan-
dard errors being clustered at the subject level. If static and dynamic skewness preferences have
the same driver, we expect the coefficient on SSCi to be positive and statistically significant. As
a robustness check, we run the same regression on the subsample of subjects who reveal in the
static decisions a unique switching point, consistent with salience theory, for each set of six lot-
teries with the same expected value and the same variance (i.e., we use only those subjects who
choose, for a given expected value and variance, a binary lottery over its expected value if and
only if it is sufficiently right-skewed).
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Appendix A: Proofs

A.1: Preliminary Results on Arithmetic Brownian Motions

Lemma 1. Fix a current wealth level xt ∈ R>0 and a non-zero drift µ. Then, for any stopping time τa,b
with a < xt < b, we have

Pt[Xτa,b = a] =
exp(−(2µ/ν2)b)− exp(−(2µ/ν2)xt)

exp(−(2µ/ν2)b)− exp(−(2µ/ν2)a)
. (1)

In particular, an increase in the drift of the process improves the distribution ofXτa,b in terms of first-order
stochastic dominance.

Proof. Fix some xt, a, b ∈ R≥0 with a < xt < b. For any a stopping time τa,b, we have

Pt[Xτa,b = a] =
Ψ(b)−Ψ(xt)

Ψ(b)−Ψ(a)
,

where Ψ : R → R, z 7→ Ψ(z) =
∫ z
0 exp

(
−
∫ y
0 2 µ

ν2
dv
)
dy =

∫ z
0 exp

(
−2 µ

ν2
y
)
dy is a strictly

increasing scale function (e.g., Revuz and Yor, 1999, pp. 302). For any non-zero drift, we obtain

Ψ(z) =

∫ z

0
exp

(
−2

µ

ν2
y
)
dy =

ν2

2µ

[
1− exp(−(2µ/ν2)z)

]
,

which yields the claim. The second part follows immediately from taking the partial derivative
of the right-hand side of Eq. (1) with respect to µ, which is strictly negative.

Lemma 2. Fix an initial wealth level x ∈ R>0 and an expiration date T ∈ R>0. Consider a stopping
time τa,b with a < x < b and take the perspective of period t = 0.

(a) The probability of stopping at the expiration date equals

P0[τa,b ≥ T |X0 = x] =

∫ b

a
q(y, T |X0 = x) dy,

where the integrand is given by

q(y, T |X0 = x) =
2 exp

(
µ(y−x)
ν2

)
exp

(
−T

2
µ2

ν2

)
(b− a)

∞∑
n=1

{
sin

(
πn(x− a)
b− a

)
sin

(
πn(y − a)
b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
.

(b) lima→x P0[τa,b ≥ T |X0 = x] = 0.

(c) limT→∞ P0[τa,b ≥ T |X0 = x] = 0.

(d) For any wealth level y ∈ R≥0 and point in time t ∈ (0, T ], the partial derivative ∂
∂xq(y, t|X0 = x)

exists and is bounded. Therefore, also ∂
∂xP0[τa,b ≥ T |X0 = x] exists and is bounded.

(e) For any stopping time τa,b with a < x < b, the CDF of XT conditional on τa,b ≥ T equals

P0[XT ≤ z|X0 = x, τa,b ≥ T ] =

∫ z
a
exp

(
µ(y−x)
ν2

)∑∞
n=1

{
sin
(
πn(x−a)
b−a

)
sin
(
πn(y−a)
b−a

)
exp

(
−T

2
n2π2ν2

(b−a)2

)}
dy∫ b

a
exp

(
µ(y−x)
ν2

)∑∞
n=1

{
sin
(
πn(x−a)
b−a

)
sin
(
πn(y−a)
b−a

)
exp

(
−T

2
n2π2ν2

(b−a)2

)}
dy
.
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(f) For any stopping time τa,b with a < x < b and z ∈ [a, b], ∂
∂µP0[XT ≤ z|X0 = x, τa,b ≥ T ] ≤ 0,

holding with a strict inequality for any z < b. Hence, an increase in the drift of the process improves
the distribution of XT conditional on τa,b ≥ T in terms of first-order stochastic dominance.

(g) limµ→∞ P0[XT ≤ x|X0 = x, τa,b ≥ T ] = 0 = limµ→−∞ P0[XT > x|X0 = x, τa,b ≥ T ].

(h) Let µ < 0. Then, for any T > − (x−a)
µ , we have ∂

∂µP0[τa,b ≥ T |X0 = x] > 0.

Now suppose that a = x− ε− ε′ and b = x+ ε for some ε > 0 and ε′ ≥ 0. In addition, let α ∈ (0, ε).

(i) If µ ≤ 0, then P0[XT ≤ x− α|X0 = x, τa,b ≥ T ] ≥ P0[XT > x+ α|X0 = x, τa,b ≥ T ], holding
with a strict inequality whenever µ < 0.

Proof. PART (a). Example 5.1 in Cox and Miller (1977).

PART (b). Follows from q(y, t|X0 = x) being continuous in x and sin(nπ) = 0 for any n ∈ Z.

PART (c). Fix an initial wealth level x ∈ R>0 and a stopping time τa,b. Then, we have

P0[τa,b ≥ T |X0 = x] ∝
∫ b

a

exp
(
µ(y−x)
ν2

)
exp

(
T
2
µ2

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)
b− a

)
sin

(
πn(y − a)
b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

≤ 1

exp
(
T
2
µ2

ν2

) ∫ b

a

exp

(
µ(y − x)

ν2

) ∞∑
n=1

exp

(
−T

2

n2π2ν2

(b− a)2

)
dy

≤ 1

exp
(
T
2
µ2

ν2

) ∫ b

a

exp

(
µ(y − x)

ν2

) ∞∑
n=1

exp

(
−n · Tπ2ν2

2(b− a)2

)
dy

=
1

exp
(
T
2
µ2

ν2

)(
exp

(
Tπ2ν2

2(b−a)2

)
− 1
) ∫ b

a

exp

(
µ(y − x)

ν2

)
dy

T→∞−−−−→ 0,

where the first inequality follows from the fact that | sin
(
πn(x−a)
b−a

)
sin
(
πn(y−a)
b−a

)
| ≤ 1 and the

second inequality holds as n ≥ 1 and Tπ2ν2

2(b−a)2 > 0.

PART (d). Straightforward computations show that, if ∂
∂xq(y, t|X0 = x) exists, then

∂

∂x
q(y, t|X0 = x) = − µ

ν2
q(y, t|X0 = x)

+
2 exp

(
µ(y−x)
ν2

)
exp

(
−T

2
µ2

ν2

)
(b− a)2

∞∑
n=1

{
nπ cos

(
πn(x− a)
b− a

)
sin

(
πn(y − a)
b− a

)
exp

(
− t
2

n2π2ν2

(b− a)2

)}
.

Now, since
∣∣ cos

(
πn(x−a)
b−a

)
sin
(
πn(y−a)
b−a

)
| ≤ 1 and since exp

(
− t

2
n2π2ν2

(b−a)2

)
≤ exp

(
− t

2
nπν2

(b−a)2

)
and

since q(y, t|X0 = x) ≤ 1, it is sufficient to show that

∞∑
n=1

{
nπ exp

(
− t

2

nπν2

(b− a)2

)}
=

exp
(
t
2

πν2

(b−a)2

)
π(

exp
(
t
2

πν2

(b−a)2

)
− 1
)2 <∞.

As P0[τa,b ≥ T |X0 = x] is given by the integral of q(y, t|X0 = x) over the interval [a, b] and as it
is bounded by one, we conclude that ∂

∂xP0[τa,b ≥ T |X0 = x] exists and that it is bounded.

PART (e). Follows immediately from Part (a).
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PART (f). Denote q(y, T ) = q(y, T |X0 = x). It follows from Part (e) that the claimed in-
equality, ∂

∂µP0[XT ≤ z|X0 = x, τa,b ≥ T ] ≤ 0, holds if and only if

(∫ z

a
(y − x)q(y, T ) dy

)
·
(∫ b

a
q(y, T ) dy

)
≤
(∫ b

a
(y − x)q(y, T ) dy

)
·
(∫ z

a
q(y, T ) dy

)
,

or, equivalently, E0[XT |X0 = x, τa,b ≥ T,XT ≤ z] ≤ E0[XT |X0 = x, τa,b ≥ T ], which is true.

PART (g). Follows immediately from Part (d) and the fact that limµ→∞ exp
(
µ(y−x)
ν2

)
= 0 if

and only if y < x, while limµ→−∞ exp
(
µ(y−x)
ν2

)
= 0 if and only if y > x.

PART (h). Let µ < 0. Then, we have

∂

∂µ
P0[τa,b ≥ T |X0 = x] =

∫ b

a

∂

∂µ
q(y, T |X0 = x) dy

=
1

ν2

∫ b

a
(y − x)q(y, T |X0 = x) dy + T

(−µ)

ν2

∫ b

a
q(y, T |X0 = x) dy

∝ E0[XT |X0 = x, τa,b ≥ T ]− x+ T (−µ)

> a− x+ T (−µ),

where, in the third line, we mutiply with ν2 and divide by P0[τa,b ≥ T |X0 = x], and where the
inequality follows from the fact that E0[XT |X0 = x, τa,b ≥ T ] > a.

PART (i). To begin with, let ε′ = 0. By Part (d), we have to show that

∫ x−α

a
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

≥
∫ b

x+α
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

for any α ∈ (0, ε), with a strict inequality if µ < 0. For any µ ≤ 0, we have exp
(
µ(y−x)
ν2

)
≥ 1 if

and only if y ≤ x, holding with a strict inequality whenever y < x and µ < 0. This implies that

∫ x−α

a
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

≥
∫ πn

2
α
ε

πn
2

∑
n∈N,n odd

sin
(πn

2

)
sin
(πn

2
− z
)

exp

(
−T

2

n2π2ν2

4ε2

)
dz

=

∫ πn
2

πn
2
α
ε

∑
n∈N,n odd

sin
(πn

2

)
sin
(πn

2
+ z
)

exp

(
−T

2

n2π2ν2

4ε2

)
dz

≥
∫ b

x+α
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy,

where the two inequalities follow from the fact that x−a
b−a = 1

2 and sin
(
πn
2

)
= 0 for any even

n ∈ N while the equality holds since sin
(
πn
2 − z

)
= sin

(
πn
2 + z

)
for any odd n ∈ N and any

z ∈ (0, πn2 ). The claim follows from the fact that the inequalities are strict whenever µ < 0.
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Fix some ε > 0 and µ ≤ 0. Now, if ε′ > 0, the probability that XT is weakly below x,
conditional on reaching the expiration date when playing according to the stopping time τa,b,
P0[XT ≤ x|X0 = x, τa,b ≥ T ], increases compared to the case with ε′ = 0. This follows basically
from the fact that due to ε′ > 0 there is now more room below x than above x to reach the
expiration date T and from the continuity of the sample paths.

A.2: Stopping Behavior of a Naive Salient Thinker

Proof of Proposition 1. PART (a). Let µ ≥ 0. We have to show that for any point in time t < T with a
current wealth levelXt = xt there exists some stopping time τa,b such that U s

(
Xτa,b∧T |C

)
> xt. Since,

for any a > 0, the process is a Submartingale by assumption (even conditional on stopping
before the expiration date), we have U s

(
Xτa,b∧T |C, τa,b < T

)
> xt if σ(b, xt) > σ(a, xt). It

is easy to see that for any xt and any a ∈ (0, xt) there exists some b∗ = b∗(a, xt) such that
σ(b∗, xt) = σ(a, xt) and that, for any b > b∗, σ(b, xt) > σ(a, xt) holds. Since σ(a, xt) decreases in
a for any a < xt and since σ(b, xt) increases in b for any b > xt, we know that b∗(a, xt)decreases in
a. The claim follows from the fact that, for any fixed t < T , we have lima→xt Pt[τa,b∗+ε < T ] = 1.

PART (b). Follows immediately from Part (a) and continuity.

Proof of Proposition 2. Consider a stopping strategy that corresponds to the stopping time τa,b
with a := x − ε − ε′ and b := x + ε for some ε, ε′ > 0 and ε + ε′ ≤ x, and that is therefore not
naively right-skewed. Moreover, we denote as

Φµ(z) := P0[XT ≤ z|Xt = xt, τa,b ≥ T ]

the CDF of XT conditional on reaching the expiration date when choosing the above strategy.
Denote Pt[τa,b < T ] := Pt[τa,b < T |Xt = xt]. Then, it follows that

U s
(
XT∧τa,b |C

)
− xt ∝ Pt[τa,b < T ] ·

[
− (ε+ ε′)σ(x− ε− ε′, xt)p+ εσ(x+ ε, xt)(1− p)

]
+ Pt[τa,b ≥ T ] ·

∫
(a,b)

(z − xt)σ(z, xt) dΦµ(z)

< Pt[τa,b < T ] · σ(x+ ε, xt) ·
[
− (ε+ ε′)p+ ε(1− p)

]
+ Pt[τa,b ≥ T ] ·

∫
(−ε,ε)

zσ(xt + z, xt) dΦ̃µ(xt + z)

< Pt[τa,b ≥ T ] ·
∫
(−ε,ε)

zσ(xt + |z|, xt) dΦ̃µ(xt + z)

≤ Pt[τa,b ≥ T ] ·
∫
(0,ε)

(z − z)σ(xt + z, xt) dΦ̃µ(xt + z) = 0,

where the probability p = p(a, b, µ) is defined as in Eq. (1), the first inequality follows from
ordering and diminishing sensitivity as well as the construction of Φ̃µ, which is defined as
Φ̃µ(z) := Φµ(z) for any z ≥ x − ε and Φ̃µ(z) := 0 for any z < x − ε, the second inequality
follows from the fact that the drift of the process is non-positive and by diminishing sensitivity,
and the weak inequality holds by Lemma 2 (i) and by diminishing sensitivity.
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Proof of Proposition 3. The proof proceeds in two steps. In a first step, we assume T =∞, where
any Markov strategy implements a binary lottery. In a second step, we consider T <∞.

1. STEP: Let T =∞ and µ < 0. We have to show that there exists some µ̃ ∈ R such that for any
µ < µ̃ no attractive stopping strategy exists; that is, for any µ < µ̃, it has to hold that

sup
(a,b)∈[0,x)×(x,∞)

p(a, b, µ)(a− x)σ(a, x) + (1− p(a, b, µ))(b− x)σ(b, x) ≤ 0. (2)

Since the salience function is bounded (away from zero), we obtain

sup
(a,b)∈[0,x)×(x,∞)

p(a, b, µ)(a− x)σ(a, x) + (1− p(a, b, µ))(b− x)σ(b, x)

≤ sup
(a,b)∈[0,x)×(x,∞)

p(a, b, µ)(a− x)σ + (1− p(a, b, µ))(b− x)σ,

where σ := sup(x,y)∈R2
≥0
σ(x, y) and σ := inf(x,y)∈R2

≥0
σ(x, y). We proceed by distinguishing,

for a fixed drift µ < 0 and a fixed upper stopping threshold b > x, different cases depending
on the lower stopping threshold a < x that maximizes this upper bound on the difference in
salience-weighted utility, ∆(a, b, µ) := p(a, b, µ)(a− x)σ + (1− p(a, b, µ))(b− x)σ.

1. Case: For the sake of a contradiction, let the upper bound ∆(a, b, µ) be maximized at a∗ =

a∗(b, µ) ∈ (0, x). A necessary condition for this to be true is that ∂
∂a∆(a, b, µ)

∣∣
a=a∗(b,µ)

= 0 holds.
This leaves us with a unique candidate for the optimal lower stopping threshold,

a∗(b, µ) = − ν
2

2µ

[
LambertW

(
−exp

(
−1 + 2

µ

ν2
(b− x)(σ/σ − 1)

))
+ 1

]
+ x+

σ

σ
(b− x), (3)

where LambertW : (−1/e,∞)→ (−1,∞) denotes the principle branch of the Lambert W func-
tion. For any b > x and any µ < 0, we have a∗(b, µ) > x; a contradiction. Hence, ∆(a, b, µ) is
either maximized at a = 0 or in the limit of a approaching x. We analyze both cases separately.

2. Case: Suppose that ∆(a, b, µ) is maximized at a = 0. Then, we have

sup
(a,b)∈[0,x)×(x,∞)

p(a, b, µ)(a− x)σ(a, x) + (1− p(a, b, µ))(b− x)σ(b, x) ≤ sup
b∈(x,∞)

∆(0, b, µ).

Now it is sufficient to show that there exists some µ̃ ∈ R such that for any µ < µ̃ it holds that
supb∈(x,∞) ∆(0, b, µ) = limb→x ∆(0, b, µ) = 0. Denote µ̃ := −ν2

2
σ
σ
1
x . Then, it follows that

∂

∂b
∆(0, b, µ) = −

(
xσ + (b− x)σ

)( ∂

∂b
p(0, b, µ)

)
+
(
1− p(0, b, µ)

)
σ

=
(
1− p(0, b, µ)

)[
2
µ

ν2
(
xσ + (b− x)σ

)( exp
(
− 2 µ

ν2
b
)

exp
(
− 2 µ

ν2
b
)
− 1

)
+ σ

]
<
(
1− p(0, b, µ)

)︸ ︷︷ ︸
>0

[
2
µ

ν2
xσ + σ

]
︸ ︷︷ ︸
<0 for µ<µ̃

,

where the inequality holds by the fact that µ < 0 and b > x. This proves the claim.
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3. Case: Suppose a maximizer does not exists: supa∈[0,x) ∆(a, b, µ) = lima→x ∆(a, b, µ) = 0,
where the second equality follows from the fact that lima→x p(a, b, µ) = 1. But then we have

sup
(a,b)∈[0,x)×(x,∞)

p(a, b, µ)(a− x)σ(a, x) + (1− p(a, b, µ))(b− x)σ(b, x)

= sup
b∈(x,∞)

sup
a∈[0,x)

p(a, b, µ)(a− x)σ(a, x) + (1− p(a, b, µ))(b− x)σ(b, x)

≤ sup
b∈(x,∞)

sup
a∈[0,x)

∆(a, b, µ) = 0,

irrespective of the drift of the process, which proves our claim.

2. STEP: Let T < ∞ and fix an initial wealth x > 0. Suppose the agent is restricted to
time-invariant strategies. Let τa,b be a stopping time with a < x < b. As before, denote as

Φµ(z) := P0[XT ≤ z|X0 = x, τa,b ≥ T ]

the cumulative distribution function of XT conditional on reaching the expiration date.
In order to prove the statement, we have to show that there exists some µ̃ ∈ R such that for any

µ < µ̃ no attractive stopping strategy exists; that is, for any µ < µ̃, it has to hold that

sup
(a,b)∈[0,x)×(x,∞)

{
P0[τa,b < T ] ·

[
p(a− x)σ(a, x) + (1− p)(b− x)σ(b, x)

]
+ P0[τa,b ≥ T ] ·

∫
(a,b)

(z − x)σ(z, x) dΦµ(z)

}
≤ 0,

Again, we will distinguish, for a fixed drift µ < 0 and a fixed upper stopping threshold b > x,
different cases depending on the lower stopping threshold a < x that maximizes the upper
bound on the difference in salience-weighted utility, which is now given by

∆̃(a, b, µ) := P0[τa,b < T ]·
[
p(a− x)σ + (1− p)(b− x)σ

]
+ P0[τa,b ≥ T ] ·

[
σ

∫
(a∗,x)

(z − x) dΦµ(z) + σ

∫
(x,b)

(z − x) dΦµ(z)

]

1. Case: Suppose ∆̃(a, b, µ) is maxmized at a∗ = a∗(b, µ) with limµ→−∞ a
∗(b, µ) < x − ε for

some ε > 0. By the first step (i.e., T =∞), there exists some µ̃ ∈ R such that for any µ < µ̃,

∆̃(a∗, b, µ) ≤ P0[τa∗,b ≥ T ] ·
[
σ

∫
(a∗,x)

(z − x) dΦµ(z) + σ

∫
(x,b)

(z − x) dΦµ(z)

]
.

Now it is sufficient to show that

lim
µ→−∞

σ

∫
(a∗,x)

(z − x) dΦµ(z) + σ

∫
(x,b)

(z − x) dΦµ(z)

< lim
µ→−∞

σ

∫
(x−ε,x)

(z − x) dΦµ(z) + σ

∫
(x,b)

(z − x) dΦµ(z) < 0,

which follows immediately from the fact that, by Lemma 2 (g), we have limµ→−∞Φµ(x) = 1.
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2. Case: Suppose that ∆̃(a, b, µ) is maximized in the limit of a approaching x. Then,

sup
(a,b)∈[0,x)×(x,∞)

∆̃(a, b, µ) = sup
b∈(x,∞)

lim
a→x

∆̃(a, b, µ) = 0.

since, for any fixed b and any fixed T > 0, by Lemma 2 (b) it follows that lima→x P0[τa,b < T ] = 1.
3. Case: Suppose, for the sake of a contradiction, that a maximizer a∗ = a∗(b, µ) of ∆̃(a, b, µ)

exists and that any maximizer satisfies limµ→−∞ a
∗(b, µ) = x. Notice that, for any fixed b > x,

the mapping ∆̃(a, b, µ) is continuous in both a and µ. Next, notice that the set of feasible a is not
constrained by the parameter µ, that is, any stopping threshold a ∈ [0, x) is feasible, irrespective
of the drift µ. Hence, the set of feasible thresholds a is trivially continuous, because constant, in
µ. Obviously, [0, x) is not compact. But, as we assume that the set of maximizers is non-empty,
Berge’s Maximum Theorem still implies that this set has to be upper hemicontinuous.

Now, for any fixed a < x < b, we have limµ→−∞ P0[τa,b < T ] = 1, and thus it follows that

lim
µ→−∞

∆̃(a, b, µ) = lim
µ→−∞

[
p(a− x)σ + (1− p)(b− x)σ

]
.

We already know that, if p(a−x)σ+(1−p)(b−x)σ has a maximizer, then it is unique and given
by the expression in Eq. (3). Since the set of maximizers is non-empty by assumption and, in
particular, upper hemicontinuous, we know that, in the limit ofµ approaching negative inifinity,
it has to include the limit of Eq. (3), which is given by x+ σ

σ (b− x) > x; a contradiction.

Proof of Proposition 4. Fix an initial wealth level x ∈ R>0 and a volatility ν. Consider the two
processes with drift parameters 0 ≥ µ′ > µ. We have to show that if a naive salient thinker does
not stop the process with drift µ immediately, then he does not stop the process with drift µ′ immediately.

Without loss of generality, we can assume that µ′ < 0, as we have already seen that for µ′ = 0

there is a stopping strategy that is more attractive than stopping immediately (Proposition 1).
As before, let Φµ(z) := P0[XT ≤ z|X0 = x, τa,b ≥ T ]. If a naive salient thinker does not stop the
process with drift µ immediately, there exists a stopping time τa,b such that

P0[τa,b < T ]
[
p(a− x)σ(a, x) + (1− p)(b− x)σ(b, x)

]︸ ︷︷ ︸
(?)

+ P0[τa,b ≥ T ]

∫
(a,b)

(z − x)σ(z, x) dΦµ(z)︸ ︷︷ ︸
(??)

> 0,

whereby the probability p = p(a, b, µ) is defined in Eq. (1). By Lemma 1, an increase in the drift
of the process improves the distribution of Xτa,b in terms of first-order stochastic dominance,
and by Lemma 2 (f) the same is true for the distribution of XT conditional on reaching the
expiration date. Hence, by Proposition 1 in Dertwinkel-Kalt and Köster (forthcoming), both
(?) and (??) monotonically increase in the drift µ. We have to distinguish three cases.

1. Case: Suppose that, for the process with drift µ, there exists a stopping time τa,b such that
(?) and (??) are non-negative. Since (?) and (??) monotonically increase in µ, the same stopping
strategy is more attractive than stopping immediately also for the process with a drift µ′.

17



2. Case: Suppose that, for the process with drift µ, any attractive stopping time τa,b implies
that (?) is negative, which in turn implies that (??) is positive. Take an attractive stopping time
τa,b and let T ≥ − (x−a)

µ′ =: T̂ . Then, by Lemma 2 (h), we have ∂
∂µP0[τa,b < T ] < 0 for any µ < µ′

and therefore
[
(?) − (??)

]
· ∂∂µP0[τa,b < T ] > 0 for any µ < µ′. But this, together with the fact

that (?) and (??) monotonically increase in µ, implies that, for any T ≥ T̂ ,

P0[τa,b < T ]
[
p(a− x)σ(a, x) + (1− p)(b− x)σ(b, x)

]
+ P0[τa,b ≥ T ]

∫
(a,b)

(z − x)σ(z, x) dΦµ(z)

monotonially increases in the drift µ. Obviously, as the drift of the process increases, the sign
of (?) − (??) can change. But, since (?) and (??) monotonically increase in µ, we would need
(?) > 0 for this to happen, which would then bring us back to the first case. Hence, we conclude
that, for any T ≥ T̂ , the same stopping time τa,b is more attractive than stopping immediately
also for the process with a drift µ′, which was to be proven.

3. Case: Suppose that, for the process with drift µ, any attractive stopping time τa,b implies
that (?) is positive, but (??) is negative. Then, also for the process with a drift µ′, (?) is positive.
Moreover, for a fixed stopping time τa,b, (?) is independent of T . By Lemma 2 (c), it holds that
limT→∞ P0[τa,b < T ] = 1, which then implies that, in the limit of T approaching infinity,

P0[τa,b < T ]
[
p(a− x)σ(a, x) + (1− p)(b− x)σ(b, x)

]
+ P0[τa,b ≥ T ]

∫
(a,b)

(z − x)σ(z, x) dΦµ′(z) > 0.

Since the left-hand side of the above expression is continuous in T , we conclude that the in-
equality already holds for a finite T . More precisely, there exists a T̂ < ∞ such that for any
T ≥ T̂ the same stopping strategy is more attractive than stopping immediately also for µ′.

Appendix B: Sophisticated Stopping Behavior Without Commitment

Solution concept. A sophisticated salient thinker differs from her naive counterpart in that
she anticipates her future selves to act differently which she takes into account when making
her stopping decision. A sophisticated salient thinker who lacks commitment then behaves as
if she is playing a gamewith her future selves (see, e.g., Karni and Safra, 1990). In order to solve
this game, we adopt the following equilibrium concept of Ebert and Strack (2018):

Definition 5 (Equilibrium). A stopping strategy s constitutes an equilibrium if and only if at every
point in time t it is optimal to take the decision s(Xt, t), given that all future selves follow this strategy.

Avoiding unfair gambles. Assuming µ ≤ 0, we solve for the set of equilibria defined above.
The next results shows that, in the context of our experiment, naivete is a necessary assumption
to explain (unfair) casino gambling within the salience framework.

Proposition 5. Suppose that the agent can only choose time-invariant strategies. Fix an initial wealth
level x ∈ R>0, and suppose that the process has a non-positive drift µ ≤ 0. Then, in any equilibrium,
the sophisticated salient thinker stops immediately.
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As an illustration, let us assume that T = ∞. In this case any Markov strategy is time-
invariant and therefore can be represented by a stopping time τa,b. For any such stopping time,
there exists some wealth level y′ ∈ (a, b) such that the downside of the binary lottery Xτa,b is
salient when evaluated in the choice set C = {Xτa,b , y

′}. Moreover, if the process has a non-
positive drift, then, at any wealth level y, we have E[Xτa,b ] ≤ y. Since a salient thinker values
a binary lottery with a salient downside below its expected value, the sophisticated agent an-
ticipates to stop no later than at wealth level y′. Thus, by Definition 5, a strategy s that satisfies
s(Xt) = continue for anyXt ∈ (a, b) cannot constitute an equilibrium. In contrast, at any initial
wealth level x ∈ R>0, stopping immediately can be supported as an equilibrium outcome: given
that all future selves will stop immediately, the current self is indifferent between stopping im-
mediately and continuing the process, so that it is indeed optimal to stop at every point in time.
The following proof extends this line of reasoning to finite expiration dates.

Proof of Proposition 5. Fix an initial wealth level x and a drift µ ≤ 0. The proof proceeds in two
parts: in Part (a) we assume that T =∞, while in Part (b) we consider the case with T <∞.

PART (a). Let T = ∞. Throughout the proof we will compare a given stopping strategy
(i.e., a potentially risky option) to the alternative of stopping immediately (i.e., a safe option).
Notice that, for a given stopping time τa,b, a change in the drift µ induces a first-order stochastic
dominance shift inXτa,b . Hence, by Proposition 1 inDertwinkel-Kalt andKöster (forthcoming),
it is sufficient to consider the case of a zero drift. We first prove the following lemma.

Lemma 3. Let Ct = {Ls,t, xt}, where s is a stopping strategy and xt denotes the safe option that pays
the current wealth level. The stopping strategy s constitutes an equilibrium in the sense of Definition 5
if and only if gambling behavior is described by the first leaving time τa,b of an interval (a, b) such that

U s(Xτa,b |Ct) ≥ U
s(xt|Ct) for all t < τa,b, (4)

where Xτa,b gives the lottery induced by stopping strategy s with leaving time τa,b.

Proof. Since, for T = ∞, any stopping strategy s implements a binary lottery Xτa,b over future
wealth and since a sophisticated salient thinker is aware of her time-inconsistency, she antici-
pates that her future selves will follow through with a stopping strategy s only if Eq. (4) holds.
In order to see that Eq. (4) is also sufficient for describing equilibrium behavior, consider the
stopping strategy s that satisfies s(y) = continue if and only if y ∈ (a, b). By construction, it is
optimal to continue at any wealth level y ∈ (a, b). Since the process has continuous paths, it is
also optimal to stop at any y′ /∈ (a, b), given that all future selves follow through with the stop-
ping strategy s: deviating to s(y′) = continue would not change the outcome, as the process is
stopped with probability one in any arbitrarily short period of time anyhow (Ebert and Strack,
2018, p. 14). As a consequence, the stopping strategy s constitutes an equilibrium and Eq. (4)
therefore fully describes equilibrium behavior.

For any stopping time τa,b, with 0 ≤ a < x < b, there exists somewealth level y′ ∈ (a, b) such
that σ(a, y′) > σ(b, y′). In addition, since the process has zero drift and the censoring in zero
does not play a role due to a ≥ 0, at any wealth level y, we have E[Xτa,b ] = y. Since a salient
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thinker values a binary lottery with a salient downside below its expected value, the sophisti-
cated salient thinker anticipates stopping at wealth level y′. Thus, by Definition 5, a strategy s
that satisfies s(Xt) = continue for anyXt ∈ (a, b) cannot constitute an equilibrium. In contrast,
at any initial wealth level x ∈ R≥0, stopping immediately can be supported as an equilibrium
outcome: given that all future selves will stop immediately, the current self is indifferent be-
tween stopping immediately and continuing the process, so that it is indeed optimal to stop at
every point in time. This completes the proof of this part.

PART (b). Let T < ∞. We have to show that it cannot be an equilibrium to play according to a
strategy that implements the stopping time τa,b (conditional on stopping before the expiration date). At
any point in time twith a wealth levelXt = y ∈ (a, b), a salient thinker follows the strategy that
implements τa,b (conditional on stopping before the expiration date) if and only if

Pt[τa,b < T ] ·
[
p(a− y)σ(a, y)+(1− p)(b− y)σ(b, y)

]
+ Pt[τa,b ≥ T ] ·

∫
(a,b)

(z − y)σ(z, y) dΦµ(z) ≥ 0,

where the probability p = (a, b, µ) is defined as in Eq. (1) and where Φµ denotes the CDF of
XT conditional on reaching the expiration date with this strategy. Notice that σ(a, y) > σ(b, y)

holds for any wealth level y sufficiently close to b. Also, Et[Xτa,b |Xt = y] ≤ y due to the non-
positive drift of the process. This implies that p(a− y)σ(a, y) + (1− p)(b− y)σ(b, y) < 0 for any
wealth level y sufficiently close to b. Since, for any fixed time t, we have limy→b Pt[τa,b < T ] = 1,
we thus conclude that for any τa,b there is some y′ ∈ (a, b) such that

Pt[τa,b < T ] ·
[
p(a− y)σ(a, y)+(1− p)(b− y)σ(b, y)

]
+ Pt[τa,b ≥ T ] ·

∫
(a,b)

(z − y)σ(z, y) dΦµ(z) < 0,

which was to be proven. Finally, by the same arguments as in Part (a), stopping immediately can
be supported as an equilibrium outcome. This completes the proof.
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