Intervention(s)
We will use video to convey information to farmers with the aim of changing adoption behaviour. We will focus on providing information on seed selection, soil nutrient management (including promoting organic fertilizer application), weeding, timely planting and plant spacing. From our conversations with experts, we learn that many farmers may already be aware of the existence and use of these technologies or practices. Therefore, simply providing information about the existence of modern technologies and recommended practices and on how to uses them may not be sufficient to change behavior. Often, access and afford ability was mentioned as a problem. In our videos, we will thus also try to alter the belief that seeds and fertilizers are “too expensive” by pointing out the costs and benefits of the different technologies and practices we promote. In addition, we will encourage farmers to start small, using fertilizer and seeds on a small area of their field to experiment and see for themselves, and reinvest in subsequent years. Inter-temporal decision making, where costs today have to be compared to uncertain outcomes in a distant future, is often challenging for poorly educated farmers. Furthermore, Duflo et al. (2011) point out farmers may have difficulties committing to fertilizer use in Kenya. In our video, we attempt to make farmers aware of this, and suggest some techniques to overcome this bias. We also pay considerable attention to the way the message is delivered. For instance, the message if brought by “peer farmers”, as it is found that farmers find communicators who face agricultural conditions and constrains most comparable to themselves to be the most persuasive (BenYishay et al., 2014). The information is also presented as a success story, which is assumed to affect a range of non-cognitive farmer characteristics such as aspirations, locus of control and self-esteem (Bernard et al., 2015).
The video starts with a farmer (a male farmer, a female farmer, or a couple, see below) introducing themselves. He talks about how he used to struggle with his maize gardens and how at one point in time, he decided things needed to change. It is shown how the farmer sells a hen, and obtains a small loan from a friend. This money is than used to buy small quantities of improved seed and fertilizer in a local shop. It is then shown that, before planting the improved seed, the farmer prepares the garden. He is shown collecting manure wherever he can find it, and applies it to a small corner of the field of 20m by 20m. Next, it is shown in detail how the maize seeds are spaced 75cm x 30cm with 1 plant per hill and how the DAP should be applied. The viewer is reminded to plant in time. The next scene depicts the field after about 10 to 12 days when the maize has emerged from the ground. At this stage, it is recommended that the farmer engages into gap filling to replace seeds that did not germinate with new seeds to preserve optimal plant density. The next shot shows the field at 18 to 20 days after planing, when first weeding is done. Particular attention is paid to identification of striga in an early stage. It is also advised to weed again two to three weeks later. The next scene zooms in on urea fertilizer application. Here, the field is shown at about 4 weeks after planting when the maize is knee high. It is shown how Urea topsoil dressing should be applied. Finally, it is recommended to do one more round of weeding around the tasseling stage of the maize.
We then spend some time comparing the costs to the benefits the different improved inputs and recommended practices. For fertilizer and improved seed, the costs for one acre is calculated and compared to the value of what is harvested. The profit is then compared to the value of what would have been harvested on that acre without improved seed and fertilizer. This would be less than half of what the profit would be when improved inputs are used. For recommended practices, we report what the expected yield increase would be if, for instance, recommended spacing was used or weeding is done in time.
Next, we try to promote a long run perspective, where the farmer is encouraged to start small (one tenth of an acre) and grow bigger over time. We also pay some attention to the commitment problem. We advise the farmer to, at time of harvest when the farmer sells most of his maize, immediately go to the farm supply store and purchase seeds and fertilizer, and store this in a safe place. If inputs are not available, farmers are encouraged to keep the money needed to buy the inputs in a separate, labeled container. It is sometimes argued that such mental accounting can be an effective commitment mechanism (Dupas et al., 2013). In a last scene, the farmer recapitulates and once more directly addresses the viewer an encourages him or her to try this as well.
A total of three such videos will be produced. They will be identical in terms of the information that will be in the video, but they will differ according to the gender of the messenger, corresponding to one of the factors in the factorial experimental setup. In one version of the video, the actor will be a man. In a second version of the video, the actor will be female. In a third version, the video will feature a couple as the messenger. Here, both male and female will feature in the different scenes, and the person talking to the viewer will be altered between the man and the women. Finally, we will use a placebo video for the control. This will be a neutral video on a non-related topic, such as the tourist potential of the region. Farmers will be shown any of these four videos according to random treatment allocation. Videos will be shown twice to each farmer in the sample, once before planing (July) and once immediately after planting (August).